
Stereoselective Syntheses of Co-ordinated Phosphines: Stereospecific Generation and Alkylation of the Tertiary Phosphido–Metal Group in (R^*, R^*) -[$(\eta^5-C_5H_5)$ {1,2-C₆H₄(PMePh)₂}FePMePh] at -90 °C

Geoffrey Salem and S. Bruce Wild*

Research School of Chemistry, Australian National University, Canberra, A.C.T. 2601, Australia

Deprotonation of $[(R^*,R^*),(R^*)]$ - $[(\eta^5-C_5H_5)\{1,2-C_6H_4(PMePh)_2\}FePHMePh]PF_6$ (1) with KOBu^t below -90 °C, followed by treatment of the intermediate tertiary phosphido–metal complex with iodoethane at the same temperature, produces $[(R^*,R^*),(S^*)]$ - $[(\eta^5-C_5H_5)\{1,2-C_6H_4(PMePh)_2\}FePEtMePh]PF_6$ in >99% diastereoisomeric excess.

Highly selective alkylations of terminal phosphido-metal groups (M-PX₂) are required for syntheses of macrocyclic poly(secondary or tertiary phosphines) on metal ions in order to avoid separations of complex mixtures of diastereoisomeric products.¹ In recent work, we showed that the methylation of the secondary phosphido-metal group Fe-PHPh in the complex (R^*,R^*) -[(η^5 -C₅H₅){1,2-C₆H₄(PMePh)₂}-FePHPh]·thf (thf = tetrahydrofuran) is stereoselective in the temperature range -65 to +20 °C, giving separable

Scheme 1. Reagents and conditions: i, KOBu^t, EtI, tetrahydrofuran (thf), -90 °C; ii, KOBu^t, MeI, thf, -90 °C.

M.p. and selected ¹H n.m.r. data $(CD_2Cl_2 \text{ at } 20^{\circ}C)$: $[(R^*,R^*),(R^*)]$ -(1)-0.5CH₂Cl₂, see ref. 2; $[(R^*,R^*),(S^*)]$ -(2): m.p. 158—160°C; δ 0.62 (d of t, $^{3}J_{PH}$ 14, $^{3}J_{HH}$ 7 Hz, PCHH'Me), 0.64 (d, $^{2}J_{PH}$ 8 Hz, PMe), 1.40 (m, PCHH'Me), 1.76 (m, PCHH'Me), 2.09 (d, $^{2}J_{PH}$ 8 Hz, PMe³), 2.45 (d, $^{2}J_{PH}$ 8 Hz, PMe^b), 4.10 (q, $^{3}J_{PH}$ 2 Hz, C₃H₃); $[(R^*,R^*),(S^*)]$ -(3): m.p. 234—236°C; δ 0.69 (d of t, $^{3}J_{PH}$ 12 Hz, (C₃H₃); $[(R^*,R^*),(S^*)]$ -(3): m.p. 234—236°C; δ 0.69 (d of t, $^{3}J_{PH}$ 15 Hz, $^{3}J_{HH}$ 7 Hz, PCHH'Me), 1.26 (m, PCHH'Me), 1.58 (m, PCHH'Me), 2.18 (d, $^{2}J_{PH}$ 8 Hz, PMe^a), 2.40 (d, $^{2}J_{PH}$ 8 Hz, PMe^b), 4.22 (q, $^{3}J_{PH}$ 2 Hz, C₅H₅), 4.37 (d of m, $^{1}J_{PH}$ 341 Hz, PH).

The R enantiomer of each diastereoisomer is shown.

mixtures of the thermodynamic secondary phosphine diastereoisomers $[(R^*, R^*), (R^*)]$ - and $[(R^*, R^*), (S^*)]$ -(1)† $\{[(R^*, R^*), (R^*)] : [(R^*, R^*), (S^*)] = 4 : 1\}$.² We now report that the asymmetric tertiary phosphido-metal group Fe-PMePh is generated stereospecifically by deprotonation of $[(R^*, R^*), (R^*)]$ -(1)·0.5CH₂Cl₂² with KOBu^t below -90°C, and moreover, that it is reprotonated or ethylated with retention of configuration at this temperature, giving kinetic products $[(R^*, R^*), (R^*)]$ -(1) or $[(R^*, R^*), (S^*)]$ -(2) in >99% Treatment diastereoisomeric excess (d.e.).‡ of $[(R^*, R^*), (S^*)]$ -(3) with KOBut-MeI below -90 °C gives $[(R^*, R^*), (S^*)]$ -(2) in >99% d.e. However, the barrier to inversion of the Fe-PMePh group in the terminal phosphidometal intermediate (R^*, R^*) -[$(\eta^5 - C_5 H_5)$ {1,2-C₆H₄(PMePh)₂}-FePMePh]¶ is relatively low $[\Delta G^{\ddagger}(278 \text{ K}) = 58.8 \pm 1.2]$ kJ mol⁻¹],³ and reactions at temperatures above $-65 \,^{\circ}$ C give mixtures of the thermodynamic products for both protonation and ethylation in the ratio $[(R^*, R^*), (R^*)] : [(R^*, R^*), (S^*)] =$ 4.5:1.

These results auger well for stereoselective syntheses of poly(secondary or tertiary phosphines) on metal ions; recent results have shown that metal complexes can be highly effective resolving agents, protecting reagents, and chiral auxiliaries for stereoselective syntheses of macrocyclic quadridentate tertiary arsines.⁴

Received, 10th April 1987; Com. 473

References

- E. P. Kyba, C. N. Clubb, S. B. Larson, V. J. Schueler, and R. E. Davis, J. Am. Chem. Soc., 1985, 107, 2141; D. J. Brauer, F. Gol, S. Hietkamp, H. Peters, H. Sommer, O. Stelzer, and W. S. Sheldrick, Chem. Ber., 1986, 119, 349; M. Ciampolini, N. Nardi, P. L. Orioli, S. Mangani, and F. Zanobini, J. Chem. Soc., Dalton Trans., 1985, 1425.
- 2 G. T. Crisp, G. Salem, F. S. Stephens, and S. B. Wild, J. Chem. Soc., Chem. Commun., 1987, 600.
- 3 G. Binsch and H. Kessler, Angew. Chem., Int. Ed. Engl., 1980, 19, 411.
- 4 P. G. Kerr, P.-H. Leung, and S. B. Wild, J. Am. Chem. Soc., 1987, 109, 4321.

 \dagger The stereochemical descriptors used here are consistent with recent Chemical Abstracts Service indexing practice; R^* and S^* refer to the relative configurations of the chiral centres.

[‡] The fully characterized $[(R^*, R^*), (S^*)]$ diastereoisomer of (1) or the $[(R^*, R^*), (R^*)]$ diastereoisomer of (2) could not be detected by high resolution ¹H n.m.r. spectroscopy (200 MHz).

§ This compound, obtained by reaction of (R^*, R^*) -[$(\eta^5-C_5H_5)$ {1,2- C_6H_4 (PMePh)₂)FeNCMe]PF₆ and (±)-PHEtPh in boiling methanol, was separated from its diastereoisomer by fractional crystallization from an acetone–diethyl ether mixture.

¶ This compound was isolated by deprotonation of $[(R^*, R^*), (R^*)]$ -(1)·0.5CH₂Cl₂ with KOBu^t in tetrahydrofuran (thf) at 20 °C.