1385

The First Hexacarboxylato Diruthenium(III) Complex. Synthesis, X-Ray Crystal Structure, and Properties of Tetra-µ-acetato-diacetatodiruthenium(III) Monohydrate

Michael G. B. Drew,** Paula Higgins,^b and G. Malachy McCann*b

^a Department of Chemistry, The University, Whiteknights, Reading RG6 2AD, U.K.

^b Chemistry Department, St. Patrick's College, Maynooth, Co. Kildare, Ireland

The reaction of $[Ru_2(\mu-OAc)_4Cl]$ with AgOAc in AcOH/MeOH gives the red oxidation product $[Ru_2(\mu-OAc)_4(OAc)_2]$ ·H₂O (1), the structure of which has been determined by *X*-ray crystallography; this is the first example of a paramagnetic Ru_2^{6+} complex.

The binuclear acetato complexes $[Ru_2(\mu-OAc)_4]$ (ref. 1) and $[Ru_2(\mu-OAc)_4(H_2O)_2]BF_4$ (ref. 2) have been structurally characterized and shown to contain metal-to-metal bonded Ru_2^{4+} and Ru_2^{5+} cores, respectively. Their electronic and structural properties were found to be consistent with the metal-metal orbital ordering $\sigma 2\pi \delta \delta^* 2\pi^*$, first proposed by Norman and his co-workers.³ The paramagnetic Ru_2^{4+} (d¹²) acetato species [μ_{eff} 2.1 μ_B per Ru^{2+} (295 K)] has the assigned configuration $\sigma^2 2\pi^4 \delta^2 \delta^{*1} 2\pi^{*3}$, consistent with the presence of two unpaired electrons per dimer unit and a metal-metal

bond order of 2. For the Ru_2^{5+} (d¹¹) complex [$Ru_2(\mu-OAc)_4Cl$], the magnetic moment^{4,5} [μ_{eff} 2.88 μ_B per $Ru^{2\cdot5+}$ (298 K)] confirmed that the high-spin S = 3/2 ($\delta^{*1} 2\pi^{*2}$) configuration was favoured over the $S = \frac{1}{2}$ alternative by close spacing of the π^* and δ^* orbitals. The Ru_2^{5+} species have a metal-metal bond order of 2.5. Although not structurally characterized, the Ru_2^{5+} penta-acetato complex [$Ru_2(OAc)_5$] has been reported^{4,5} [μ_{eff} 2.84 μ_B per $Ru^{2\cdot5+}$ (293 K)].⁵

Here we report the synthesis, structure, and physical properties of the hexa-acetato Ru_2^{0+} (d¹⁰) complex, $[Ru_2(\mu$ -

Table 1. Bond length data for the complex (1) and related complexes.

Complex	Core	d(Ru–Ru) /Å	d(Ru-O) (bridging acetate) (av.)/Å	d(Ru–O) (axial ligand L (av.)/Å		
$[Ru_{2}(\mu - OAc)_{4}(OAc)_{2}] \cdot H_{2}O$	Ru_2^{6+}	2.265(1)	2.018(5)	L = -OAc	2.243(6)	
$[Ru_{2}(CH_{2}Bu^{t})_{6}]^{a}$ $[Ru_{2}(\mu - OAc)_{4}(H_{2}O)_{2}]BF_{4}^{b}$ $[Ru_{2}(\mu - OAc)_{4}CI]^{2}H_{2}O^{b}$ $Cs[Ru_{2}(\mu - OAc)_{4}CI_{2}]^{b}$ $[Ru_{2}(\mu - OAc)_{4}(H_{2}O)_{2}]^{c}$	$Ru_{2}^{6+}Ru_{2}^{5+}Ru_{2}^{5+}Ru_{2}^{5+}Ru_{2}^{4+}$	$\begin{array}{c} 2.311(3) \\ 2.248(1) \\ 2.267(1) \\ 2.286(2) \\ 2.262(3) \end{array}$	2.00(4) 2.019(3) 2.02(1) 2.068(4)	$L = OH_2$ $L = CI^-$ $L = CI^-$ $L = OH_2$	2.31(1) 2.566(1) 2.521(4) 2.335(4)	
^a Ref. 10. ^b Ref. 2. ^c Ref. 1.	Ku ₂ 4+	2.262(3)	2.068(4)	$L = OH_2$	2.335(4)	

Figure 1. The molecular structure of tetra-µ-acetato-diacetatodiruthenium(III). Selected bond lengths and bond angles: Ru-Ru* 2.265(1), Ru-O(11) 2.243(6), Ru-O(21) 2.021(5), Ru-O(22*) 2.026(5), Ru-O(31) 2.016(5), Ru-O(32*) 2.011(5) Å; O(31)-Ru-O(32*) 178.7(3), O(21)-Ru-O(22*) 179.0(3), O(21)-Ru-O(31) 90.4(2), O(31)-Ru-O(22*) 89.5(2)°.

OAc)₄(OAc)₂]·H₂O (1). This complex completes the family of structurally characterized Ru₂⁴⁺, Ru₂⁵⁺ and Ru₂⁶⁺ acetates. It is formed by the reaction of [Ru₂(μ -OAc)₄Cl] with AgOAc (1:1 molar ratio) in AcOH/MeOH under anaerobic or aerobic conditions. After removal of the stoicheiometric amount of AgCl the filtrate was concentrated in air to give the red crystalline product (1) in 58% yield.[†] A satisfactory elemental analysis was obtained. The complex behaves as a 1:1 electrolyte in MeOH [Λ (1 × 10⁻³ mol dm⁻³) = 69 S cm² mol⁻¹] and gave an electronic spectrum with λ_{max} . 422 nm (ϵ 395 dm³ mol⁻¹ cm⁻¹ in MeOH). Two different co-ordination

modes for the acetate ligands were evident from the i.r. spectrum (KBr). The medium-intensity band at 1560 cm⁻¹ was assigned to v_{asym} (CO₂) of unidentate AcO⁻, and the strong detailed band spanning 1365-1450 cm⁻¹ contained the $v_{asym.}$ (CO₂) and $v_{sym.}$ (CO₂) of bridging AcO⁻ and also, presumably, $v_{sym.}$ (CO₂) of unidentate AcO⁻. The cyclic voltammogram (1 × 10⁻³ M in 0.07 M Et₄NClO₄-MeOH) showed two reversible one-electron reductions with $E_{\frac{1}{2}}$ +182 and -24 mV, versus Ag/AgCl. Magnetic susceptibility measurements at 293 K gave $\mu_{eff.}$ 3.21 μ_B per Ru^{3+} and 4.53 μ_B per Ru₂⁶⁺ unit. At 93 \bar{K} values of μ_{eff} decreased slightly to 3.10 μ_B per Ru³⁺ and 4.19 μ_B per Ru⁶⁺ unit, suggesting a small degree of temperature-dependent intramolecular antiferromagnetic coupling between the two Ru³⁺ ions in the d¹⁰ bimetallic core.⁷ The magnetic behaviour of the present hexa-acetato species contrasts with that reported for other $Ru_{2^{6+}}$ complexes: $[Ru_2O(OAc)_4(PPh_3)_2]$ ·MeOH⁸ and $Ru_2L_2^{2+}$ (where L is a dianionic N₄ macrocyclic ligand)⁹ are both diamagnetic, and the structurally characterized complexes $[Ru_2(CH_2Bu^t)_6]^{10}$ and $[Ru_2(C_5NH_4NH)_6(PMe_2Ph)_2]^6$ are reported to have the fully spin-paired configurations $\sigma^2 2\pi^4 \delta^2 \delta^{*2}$ and $\sigma^2 \pi^2 \delta^2 \delta^{*2} \pi^{*2}$, respectively. However, the isoelectronic Os_2^{6+} complexes $[Os_2(\mu - O_2CR)_4Cl_2]^{11}$ were reported to have appreciable population of a spin-triplet state at ambient temperature, with a singlet ground-state becoming increasingly favoured at lower temperatures.

The X-ray crystal structure of (1) is shown in Figure 1.‡ Relevant interatomic distances for this and related species are summarised in Table 1. For (1) the Ru-Ru distance of 2.265(1) Å is almost identical with that reported for $[Ru_2(\mu-OAc)_4(H_2O)_2]$, and slightly longer than that reported for $[Ru_2(\mu-OAc)_4(H_2O)_2]BF_4$. However, for the latter example of a Ru₂⁵⁺ species it is more appropriate to compare the Ru-Ru distance in (1) with that in $[Ru_2(\mu-OAc)_4Cl] \cdot 2H_2O$ and Cs[Ru₂(μ -O)_4Cl₂] where the axial ligands are anionic. The Ru-Ru distances in these Ru₂⁵⁺ complexes are slightly longer than in the present Ru₂⁶⁺ species. In the non-bridged Ru₂⁶⁺

[†] Although the conditions of the synthesis were essentially nonoxidizing, the oxidation of Ru_2^{5+} to Ru_2^{6+} was evident. Since the yield was >50%, and no second product was found, we believe that the reaction did not go via the disproportionation $2Ru_2^{5+} \rightarrow Ru_2^{4+} + Ru_2^{6+}$. A similar Ru_2^{5+} to Ru_2^{6+} oxidation was found by Cotton and his co-workers⁶ in a reaction in which the conditions were reducing in nature rather than oxidizing.

[‡] The molecule contains a crystallographic centre of symmetry. Crystal data: [Ru₂O₁₂C₁₈H₁₈]·1.4H₂O, triclinic, space group $P\overline{I}$, a = 9.368(8), b = 8.376(8), c = 7.965(7)Å, $\alpha = 92.2(1)$, $\beta = 83.7(1)$, $\gamma = 51.8(1)^\circ$, U = 483.8Å³, M = 581.62, $D_c = 1.90$ g cm⁻³, μ (Mo- K_{α}) = 15.93 cm⁻¹, F(000) = 288, λ (Mo- K_{α}) = 0.7107Å. Of 1607 unique intensity data measured, 1467 had I > 30(I), and were refined to R = 0.048 ($R_w = 0.052$). Non-hydrogen atoms were anisotropic; hydrogen atoms were refined as parts of rigid methyl groups. The water molecule was given occupancy of 0.70. Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

complex $[Ru_2(C_2Bu^{t})_6]^{10}$ the Ru-Ru bond distance is the longest of all. It is noteworthy that the average Ru-O (bridging acetate) distances in $[Ru_2(\mu-OAc)_4(H_2O)_2]$ are consistently greater than those in (1), and that the latter distances are very similar to those in $[Ru_2(\mu-OAc)_4Cl]\cdot 2H_2O$ and $Cs[Ru_2(\mu-OAc)_4Cl_2]$. This indicates that the Ru-O (bridging acetate) interaction is stronger in the Ru₂⁶⁺ and Ru₂⁵⁺ cases than in the Ru₂⁴⁺, a trend consistent with the increased positive charge on the Ru₂ core. Also, the Ru-O (axial acetate) distance in (1) is much shorter than the Ru-Cl distances in $[Ru_2(\mu-OAc)_4Cl]\cdot 2H_2O$ and $Cs[Ru_2(\mu-OAc)_4Cl_2]$, indicating the stronger attraction of the Ru₂⁶⁺ core for axial anionic ligands.

Finally, the structure found for (1) is identical with that proposed for the V_2^{6+} complex $[V_2(OAc)_6]$,¹² a compound which also exhibits unexpected magnetic properties.

We thank Johnson Matthey for the loan of $RuCl_3 \cdot xH_2O$, the Department of Chemistry, University College, Cork, for microanalysis, and the Department of Education, Ireland, for a grant (to P. H.).

Received, 9th March 1987; Com. 292

- 1 A. J. Lindsay, G. Wilkinson, M. Motevalli, and M. B. Hursthouse, J. Chem. Soc., Dalton Trans., 1985, 2321.
- 2 A. Bino, F. A. Cotton, and T. R. Felthouse, *Inorg. Chem.*, 1979, 18, 2599.
- 3 J. G. Norman, Jr., G. E. Renzoini, and D. A. Case, J. Am. Chem. Soc., 1979, 101, 5256.
- 4 T. A. Stephenson and G. Wilkinson, J. Inorg. Nucl. Chem., 1966, 28, 2285.
- 5 M. Mukaida, T. Nomura, and T. Ishimori, Bull. Chem. Soc. Jpn., 1972, 45, 2143.
- 6 A. R. Chakravarty, F. A. Cotton, and D. A. Tocher, *Inorg. Chem.*, 1984, 23, 4030.
- 7 A. Earnshaw, 'Introduction to Magnetochemistry,' Academic Press, London, 1968.
- 8 R. W. Mitchell, A. Spencer, and G. Wilkinson, J. Chem. Soc., Dalton Trans., 1973, 846.
- 9 L. F. Warren and V. L. Goedken, J. Chem. Soc., Chem. Commun., 1978, 909.
- 10 R. P. Tooze, M. Motevalli, M. B. Hursthouse, and G. Wilkinson, J. Chem. Soc., Chem. Commun., 1984, 799.
- 11 T. Behling, G. Wilkinson, T. A. Stephenson, D. A. Tocher, and M. D. Walkinshaw, J. Chem. Soc., Dalton Trans., 1983, 2109.
- 12 N. N. Greenwood, P. V. Parish, and P. Thornton, J. Chem. Soc. A., 1966, 320.