The Role of Surface O⁻ in the Selective Oxidation of Methane

Graham J. Hutchings,^a Michael S. Scurrell,^b and Jeremy R. Woodhouse^a

^a Department of Chemistry, University of the Witwatersrand, 1 Jan Smuts Avenue, Johannesburg 2001, South Africa
^b Catalysis Division, NICER-CSIR, P.O. Box 395, Pretoria 0001, South Africa

For the title reaction $O_{(s)}$ is shown to have two distinct roles: at a low temperature $O_{(s)}$ acts *via* hydrogen abstraction to form ethane selectively and at high temperature it acts as a non-selective oxidant enhancing the formation of CO₂ and H₂O.

The oxidative coupling of methane to form ethene and ethane is currently the subject of considerable research interest. A number of oxide catalysts have been proposed for this reaction^{1,2} and recently³ the specific surface area has been shown to be important. In particular, catalysts based on MgO⁴⁻⁶ and rare earth oxides⁷⁻⁹ have given yields of C₂ hydrocarbons of up to *ca*. 70 mole %. At present most research effort has been directed at the identification of selective catalysts and the mechanism of selective methane activation has received limited attention. Lunsford⁵ has observed that methyl radicals are formed which could subsequently dimerise to ethane, ethene being formed *via* oxidative dehydrogenation. Recently, studies of N–H and C–H activation with MgO¹⁰ have indicated that surface methylene is formed in addition to methyl radicals. $O_{(s)}^-$ has been proposed^{11,12} as the selective oxidant but as yet definitive catalytic data confirming these observations have not been presented. Here we present evidence, see Table 1, that $O_{(s)}^$ can have two distinct roles in the oxidation of methane, which are dependent on reaction conditions. Table 1

Expt.	Catalyst		CH₄/Oxidant mole ratio	<i>T</i> /K	$\begin{array}{c} GHSV^{a} \\ h^{-1} \end{array}$	CH₄ conv., mole %	Product selectivity, b mole%				
		Oxidant					CO ₂	СО	C_2H_4	C ₂ H ₆	Total C
1	MgO	O ₂	3.5	993	667	5.2	50.0	3.2	28.4	18.4	46.8
2	Li/MgO	$\tilde{O_2}$	3.3	993	648	2.7	33.0	1.6	26.5	38.9	65.4
3	MgO	$N_2 \tilde{O}$	3.3	993	545	3.0	88.9	6.8	2.7	1.6	4.3
4	Li/MgO	$N_{2}O$	3.4	993	638	0.3	51.9	0	9.3	38.9	48.2
5	Ag/Al_2O_3	N ₂ O	3.8	993	556	2.0	90.5	8.5	1.0	0	1.0
6	MgO	\tilde{O}_2	3.5	823	667	3.0	66.2	31.8	0.4	1.6	2.0
7	Li/MgO	O_2	3.3	823	648	1.6	59.8	17.7	5.0	17.5	22.5
8	MgO	N ₂ Õ	3.3	823	563	1.8	96.1	2.0	0.3	1.6	1.9
9	Li/MgO	N ₂ O	3.4	823	638	0.2	17.2	0	7.0	75.8	82.8

Reaction of CH₄/O₂ over MgO and Li/MgO at 993 K (expts. 1,2)† indicates that while MgO alone demonstrates significant C_2 selectivity (46.8%), addition of Li enhances the C_2 selectivity to 65.4% at the expense of methane conversion. The C_2H_4/C_2H_6 ratio indicates that MgO alone exhibits a higher oxidative dehydrogenation activity than Li/MgO. These results are in reasonable agreement with those previously described for Li/MgO.⁴ To investigate the effect of $O_{(s)}^{-}$ at high temperature (993 K) on selectivity, addition of $O_{(s)}^-$ via N_2O was studied (expts. 3,4). N_2O is known to deliver $O_{(s)}^{-1}$ on reaction with MgO.^{12,14} For MgO and Li/MgO, a significant decrease in both activity and selectivity to C_2 hydrocarbons was observed. In addition a significant increase in the CO_2 relative to CO was observed. The results indicate that the role of added $O_{(s)}^-$ under such conditions is to enhance total oxidation activity, this effect being most pronounced on MgO. Confirmation of this effect is provided by results of experiments in which CH₄/N₂O was reacted over a Ag/Al₂O₃ catalyst (expt. 5), which is known¹¹ to generate $O_{(s)}^{-}$ from N₂O. The major product, as expected, was CO_2 .

The effect of N₂O as an oxidant at low temperature (823 K) is mechanistically important (see expts. 6–9). For MgO alone, N₂O as oxidant in place of O₂ enhances the CO₂/CO ratio without significant effect on the C₂ selectivity or activity. For Li/MgO, an enhancement in the CO₂ relative to CO is also observed. However, a significant enhancement in total C₂ selectivity to 80 mole % (principally ethane) is observed, while activity is decreased by about one order of magnitude. Previous studies using O₂ as oxidant have not reported C₂ selectivities of this magnitude. From these results it is clear that the Li⁺ in the MgO matrix plays a crucial role in stabilising O_(s) generated from N₂O. This stabilised O_(s) species selectively activates CH₄ to form C₂H₆ as the principle C₂ product and this is the dominant effect at low temperature. At a higher temperature the O_(s) species enhances the total

oxidation activity of the catalysts and CO_2 becomes the principle product. MgO alone cannot stabilise the $O_{(s)}^-$ species and consequently addition of $O_{(s)}^-$ to MgO, even at low temperature, enhances the total oxidation activity.

The results of this study therefore show that whilst $O_{(s)}^{-}$ is the selective species for the activation of CH₄ as previous studies¹² suggest, $O_{(s)}^{-}$ also has a second role which becomes more dominant at higher temperatures. In this situation the production of the undesired total oxidation products is enhanced. Stabilisation of $O_{(s)}^{-}$ (generated from N₂O) by Li⁺ at low temperature leads to the observation of very high C₂ selectivities (80 mole %) but it is also apparent that Li/MgO cannot generate this species from O₂ at the lower reaction temperatures (expt. 7). Undoubtedly, the interplay between the two roles identified for $O_{(s)}^{-}$ in the oxidation of methane is complex and further studies in this area are now in progress.

We thank the Foundation for Research Development, C.S.I.R., Pretoria and the Richard Ward Foundation, University of the Witwatersrand for financial assistance.

Received, 16th March 1987; Com. 326

References

- 1 G. E. Keller and M. M. Bhasin, J. Catal., 1982, 73, 9.
- 2 I. T. A. Emesh and Y. Amenomiya, J. Phys. Chem., 1986, 90, 4785.
- 3 E. Iwamatsu, T. Moriyama, N. Takasaki, and K-I. Aika, J. Chem. Soc., Chem. Commun., 1987, 19.
- 4 T. Ito and J. H. Lunsford, Nature (London), 1985, 314, 721.
- 5 D. J. Driscoll, W. Martir, J-X. Wang, and J. H. Lunsford, J. Am. Chem. Soc., 1985, 107, 58.
- 6 T. Moriyama, N. Takasaki, E. Iwamatsu, and K-I. Aika, Chem. Lett., 1986, 1165.
- 7 K. Otsuka, K. Jinno, and A. Morikawa, J. Catal., 1986, 100, 353.
- 8 K. Otsuka, Q. Liu, M. Hatano, and A. Morikawa, *Chem. Lett.*, 1986, 467.
- 9 K. Otsuka, Q. Liu, M. Hatano, and A. Morikawa, *Chem. Lett.*, 1986, 903.
- 10 C. T. Au and M. W. Roberts, J. Chem. Soc., Faraday Trans. 1, 1987, 83, 2047.
- 11 R. B. Grant, C. A. J. Harbach, R. M. Lambert, and S. Auntan, J. Chem. Soc., Faraday Trans. 1, 1987, 83, 2035.
- 12 K-I. Aika and J. H. Lunsford, J. Phys. Chem., 1977, 81, 1393.
- 13 M. Boudart, A. Delbouille, J. A. Dumesic, S. Khammouma, and H. Topsoe, J. Catal., 1975, 37, 486.
- 14 C. Naccache, Chem. Phys. Lett., 1971, 11, 323.

[†] MgO was prepared as previously described¹³ and 5% Li/MgO was prepared using the method of Lunsford.⁵ A 5% Ag/Al₂O₃ catalyst was prepared by impregnation of α -Al₂O₃ with aqueous AgNO₃, with the resulting solid being dried (50°C, 16 h) and reduced *in situ* with hydrogen (400°C, 18 h). Reactions were performed in a quartz microreactor (13 mm o.d.) at 823 and 993 K. CH₄/O₂ and CH₄/N₂O were individually reacted over the catalysts (4 ml) at conditions given in Table 1. Blank thermal reactions in the absence of catalyst were negligible under the conditions tested.