Vinylphosphane-How Effective is n-Donation from Phosphorus Lone Pairs?

Christian Schadea and Paul von Rague Schleyer*b

^a*lnstitut fur Chemie, Medizinische Universitat zu Liibeck, Ratzeburger Allee 160, 0-2400 Liibeck, Federal Republic of Germany*

^b*lnstitut fur Organische Chemie, Universitat Erlangen-Niirnberg, Henkestr. 42, 0-8520 Erlangen, Federal Republic of Germany*

A6 initio calculations show that vinylphosphane prefers a ground state geometry with the phosphorus lone pair perpendicular to the alkene π -system.

Phosphorus lone pair π -interactions seem to be largely reduced compared with those in nitrogen homologues. For example, anomeric effects involving phosphorus are effectively absent,¹ phosphorus substituted carbocations are less stabilized than iminium ion analogues,2 and phospholes have less aromatic character than pyrroles.3.4 Vinylphosphane **(1)** is valuable as a model compound to study the phosphorus lone pair π -interaction.⁴ The recent synthesis⁵ of (1) prompts us to communicate our theoretical investigation on this and related molecules.

If the lone pair is oriented perpendicular to the adjacent n-system, no interaction between them is possible. For vinylamine, conformation $(2b)$ (with a non-planar $NH₂$ group) was found^{2c,6} to be preferred over $(2a)$ by 5.0 kcal mol⁻¹ (cal $= 4.184$ J) (6-31G*//6-31G*), since π resonance energy is lost upon rotation of the substituent. In sharp contrast, the 'nonconjugated' geometry **(la)** was found to be the most stable conformation of **(1)** at all levels of theory employed (Table 1).⁷ At MP4/6-31G*//6-31G* including zero point energy (Z.P.E.) corrections, **(la)** is marginally preferred (0.5 kcal mol⁻¹) over the 'conjugated' conformation (1b). The C_s *endo* 'nonconjugated' conformation **(lc)** is 2.6 kcal mol-1 (MP4/6-31G*/ /6-31G*) higher in energy than **(la).**

The remarkable behaviour of **(1)** is also reflected by its geometry. Rotation of the X group in $H_2C=CH-X$ compounds out of conjugation usually lengthens the C-X bonds and shortens the length of the double bond $[X = BH₂, NH₂, OH,$ **AlH2,** PH2 (planar), **SH;** 6-31G*//6-31G*]. In contrast, $d(C=C)$ increases and $d(C-PH₂)$ decreases when going from the π -in-plane conformation (1b) to the twisted conformation **(la).** The differences in bond lengths and energies are small, but significant (Table **2).**

Since hydrogen is more electronegative than phosphorus, P-H bonds may act as electron acceptors⁴ ('negative hyper-

				/6-31G*//6-31G*				Final relative
Compound		Point group	$6-31G*/6-31G*$	MP2	MP3	MP4SDTQ	Z.P.E. $(6-31G^*)$	energy $(MP4 + Z.P.E.)$
H_{∞}	(1a)	$C_{\rm s}$	419.32772 (0) (0.00)	419.68029 (0.00)	419.71331 (0.00)	419.73346 (0.00)	40.69	0.00
$H \searrow_{\varsigma}$	(1c)	\mathcal{C}_1	419.32586 (0) (1.17)	419.67937 (0.58)	419.71230 (0.63)	419.73259 (0.55)	40.60	0.47
	(1b)	$C_{\rm s}$	419.32292 (1) (3.01)	419.67589 (2.76)	419,70897 (2.72)	419.72928 (2.62)	40.41	2.37
		$C_{\rm s}$	419.26754 (1) (37.76)	419.62700 (33.44)	419.65931 (33.89)	419.67953 (33.84)	39.31	32.61
Planar		$C_{\rm s}$	419.26494 (39.39)	419.62341 (35.69)	419.65612 (35.89)	419.67608 (36.01)		

Table 1. Absolute (\sim atomic units) and relative (kcal mol^{-1}) energies of (1).

conjugation').⁸ From Mulliken population analysis, 9π -electron donation from the alkene π -system to the PH₂ group is more important in **(la)** than in **(lb).** Hence, **(la)** is better stabilized by the favourable alkene- PH_2 hyperconjugative interaction than **(lb),** where but one PH bond is oriented favourably with respect to the alkene. Conformation **(lb),** in addition, suffers from partial hydrogen eclipsing. These differences explain the main peculiarities of **(1).**

Why are the P–C π -interactions so weak in the ground state of **(l)?** Conformation **(lb)** is strongly pyramidalized at phosphorus with the lone pair oriented away from the alkene n-system. This can be probed by examining the rigid rotation with the PH_2 group held planar. Indeed, if the PH_2 group is forced to be planar, the in-plane conjugated conformation becomes *more* stable than the 90° twisted isomer (2.2 kcal mol-1, MP4/6-31G*//6-31G*). The 'usual' geometry changes produced by the ligand rotation are now observed.

Rotational barriers are a measure of π -interactions in the normal configurations of the molecules, but corrections are needed for other effects *(e.g.* hydrogen eclipsing, which is *ca.* 1 kcal mol-1 per bond). Alternatively, we may derive estimates by subtracting the phosphorus inversion barrier in (1) from that of MePH₂, where π -resonance is absent. At centres of moderate electron demand, both measures largely agree (Table 3). This, in turn, indicates that the ground state contributions by phosphorus lone pair $p\pi$ -donation in these compounds is small.

We conclude that the lack of significant $p\pi$ -donation from phosphorus lone pairs is not due to inherently weak 1st row-2nd row orbital overlap. Planarized phosphino groups are good to excellent $p\pi$ -donors, sometimes comparable to amines. However, planarization at phosphorus is very costly compared to the gain in π -resonance energy. Lone pair

Table 2. Rotational barriers (kcal mol⁻¹) and variations of bond lengths $[\Delta d(C=C), \Delta d(C-X), \text{ in } \AA]$ in H₂C=CH-X upon rotation (I) \rightarrow (II) of the substituent, MP2/6-31G*//6-31G*.

a Initial conformation: dihedral angle \angle CCOH = 0°. **b** The PH₂ group was constrained to be planar. *c* 6-31G*//6-31G*. $\frac{3}{4}$ MP4/6-31G*//6-31G* including Z.P.E. e MP4/6-31G*//6-31G*.

 $p\pi$ -donation^{\dagger} is usually decreased, since the phosphorus lone pair is bent away from the π system at the adjacent centre. pn-Overlap? becomes negligible as a consequence. **¹²**

This work was supported at Erlangen by the Fonds der Chemischen Industrie and the Deutsche Forschungsgemein-

 \dagger As is generally the case,¹¹ population analysis shows $(d-p)\pi$ interactions to be unimportant for interactions involving second row elements.

Table 3. PH₂ group inversion and rotational barriers (kcal mol⁻¹) of selected compound.

a MP4/6-31G*//6-31G* including Z.P.E. b MP4/6-31G*//6-31G*. *c* MP216-31G*//3-21+G. d MP2/6-31G*//6-31G*. MP4/6-31+G*. **f** Ref. 10.

schaft and benefited from generous assistance by the Convex corporation. C. **S.** thanks the Verband der Chemischen Industrie/Stiftung Volkswagenwerk for a Kekule grant.

Received, 8th April 1987; Corn. 459

References

- 1 P. v. R. Schleyer, E. D. Jemmis, and G. W. Spitznagel, J. *Am. Chem. SOC.,* 1985, **107,** 6393.
- 2 (a) F. Bernardi, A. Bottoni, and A. Venturini, J. *Am. Chem. SOC.,* 1986, **108,** 5395; (b) W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, 'Ab Initio Molecular Orbital Theory,' Wiley Interscience, New York, 1982, p. 348; (c) P. v. R. Schleyer and C. Schade, unpublished results.
- 3 W. Egan, R. Tang, G. Zon, and K. Mislow, J. *Am. Chem. SOC.,* 1970, 92, 1442.
- 4 W. Schafer, A. Schweig, and F. Mathey, J. *Am. Chem. SOC.,* 1976, **98,** 407.
- 5 M. C. Lasne, J. L. Ripoll, and A. Thuilier, J. *Chem. SOC., Chem. Commun.,* 1986, 1428.
- 6 S. Saebo and L. Radom, J. Mol. *Struct.* THEOCHEM., 1982,89, 227.
- *7* Calculations were carried out on a CONVEX Cl computer using the GAUSSIAN 82 program package, see ref. 2b.
- 8 P. v. R. Schleyer and **A.** Kos, *Tetrahedron,* 1983, **39,** 1141.
- 9 R. S. Mulliken, J. *Chem. Phys.,* 1955,23,1833; 1841; 2338; 2343.
- 10 G. W. Spitznagel, Dissertation, Universitat Erlangen-Nurnberg, 1985.
- 11 See P. v. R. Schleyer and P. D. Stout, *1. Chem. Soc., Chem. Commun.,* 1986, 1373; A. E. Reed and P. v. R. Schleyer, J. *Am. Chem. SOC.,* in the press.
- 12 These conclusions are general for related systems, *e.g.,* P. **v.** R. Schleyer, U. Edlund, T. Lejon, T. Venkatachalam, and E. Buncel, *Chem. Phys. Lett.* , submitted for publication.