1399

Vinylphosphane—How Effective is π -Donation from Phosphorus Lone Pairs?

Christian Schade^a and Paul von Ragué Schleyer^{*b}

^a Institut für Chemie, Medizinische Universität zu Lübeck, Ratzeburger Allee 160, D-2400 Lübeck, Federal Republic of Germany

^b Institut für Organische Chemie, Universität Erlangen-Nürnberg, Henkestr. 42, D-8520 Erlangen, Federal Republic of Germany

Ab initio calculations show that vinylphosphane prefers a ground state geometry with the phosphorus lone pair perpendicular to the alkene π -system.

Phosphorus lone pair π -interactions seem to be largely reduced compared with those in nitrogen homologues. For example, anomeric effects involving phosphorus are effectively absent,¹ phosphorus substituted carbocations are less stabilized than iminium ion analogues,² and phospholes have less aromatic character than pyrroles.^{3,4} Vinylphosphane (1) is valuable as a model compound to study the phosphorus lone pair π -interaction.⁴ The recent synthesis⁵ of (1) prompts us to communicate our theoretical investigation on this and related molecules.

If the lone pair is oriented perpendicular to the adjacent π -system, no interaction between them is possible. For vinylamine, conformation (**2b**) (with a non-planar NH₂ group) was found^{2c,6} to be preferred over (**2a**) by 5.0 kcal mol⁻¹ (cal = 4.184 J) (6-31G*//6-31G*), since π resonance energy is lost upon rotation of the substituent. In sharp contrast, the 'nonconjugated' geometry (**1a**) was found to be the most stable conformation of (**1**) at all levels of theory employed (Table 1).⁷ At MP4/6-31G*//6-31G* including zero point energy (Z.P.E.) corrections, (**1a**) is marginally preferred (0.5 kcal mol⁻¹) over the 'conjugated' conformation (**1b**). The *C*_s endo 'nonconjugated' conformation (**1c**) is 2.6 kcal mol⁻¹ (MP4/6-31G*//6-31G*) higher in energy than (**1a**).

The remarkable behaviour of (1) is also reflected by its geometry. Rotation of the X group in H₂C=CH-X compounds out of conjugation usually lengthens the C-X bonds and shortens the length of the double bond [X = BH₂, NH₂, OH, AlH₂, PH₂ (planar), SH; 6-31G*//6-31G*]. In contrast, d(C=C) increases and d(C-PH₂) decreases when going from the π -in-plane conformation (1b) to the twisted conformation (1a). The differences in bond lengths and energies are small, but significant (Table 2).

Since hydrogen is more electronegative than phosphorus, P-H bonds may act as electron acceptors⁴ ('negative hyper-

b; $\mathbf{X} = \mathbf{NH}_2$

Compound		Point group	6-31G*//6-31G*	/6-31G*//6-31G*			7 D F	Final relative
				MP2	MP3	MP4SDTQ	(6-31G*)	(MP4 + Z.P.E.)
	(1 a)	C _s	419.32772 (0) (0.00)	419.68029 (0.00)	419.71331 (0.00)	419.73346 (0.00)	40.69	0.00
	(1c)	Cı	419.32586 (0) (1.17)	419.67937 (0.58)	419.71230 (0.63)	419.73259 (0.55)	40.60	0.47
н 	(1b)	C _s	419.32292 (1) (3.01)	419.67589 (2.76)	419.70897 (2.72)	419.72928 (2.62)	40.41	2.37
		C _s	419.26754 (1) (37.76)	419.62700 (33.44)	419.65931 (33.89)	419.67953 (33.84)	39.31	32.61
H C H H H Planar		C _s	419.26494 (39.39)	419.62341 (35.69)	419.65612 (35.89)	419.67608 (36.01)		

Table 1. Absolute (- atomic units) and relative (kcal mol⁻¹) energies of (1).

conjugation').⁸ From Mulliken population analysis,⁹ π -electron donation from the alkene π -system to the PH₂ group is more important in (1a) than in (1b). Hence, (1a) is better stabilized by the favourable alkene–PH₂ hyperconjugative interaction than (1b), where but one PH bond is oriented favourably with respect to the alkene. Conformation (1b), in addition, suffers from partial hydrogen eclipsing. These differences explain the main peculiarities of (1).

Why are the P–C π -interactions so weak in the ground state of (1)? Conformation (1b) is strongly pyramidalized at phosphorus with the lone pair oriented away from the alkene π -system. This can be probed by examining the rigid rotation with the PH₂ group held planar. Indeed, if the PH₂ group is forced to be planar, the in-plane conjugated conformation becomes *more* stable than the 90° twisted isomer (2.2 kcal mol⁻¹, MP4/6-31G*//6-31G*). The 'usual' geometry changes produced by the ligand rotation are now observed.

Rotational barriers are a measure of π -interactions in the normal configurations of the molecules, but corrections are needed for other effects (*e.g.* hydrogen eclipsing, which is *ca.* 1 kcal mol⁻¹ per bond). Alternatively, we may derive estimates by subtracting the phosphorus inversion barrier in (1) from that of MePH₂, where π -resonance is absent. At centres of moderate electron demand, both measures largely agree (Table 3). This, in turn, indicates that the ground state contributions by phosphorus lone pair p π -donation in these compounds is small.

We conclude that the lack of significant $p\pi$ -donation from phosphorus lone pairs is not due to inherently weak 1st row-2nd row orbital overlap. Planarized phosphino groups are good to excellent $p\pi$ -donors, sometimes comparable to amines. However, planarization at phosphorus is very costly compared to the gain in π -resonance energy. Lone pair **Table 2.** Rotational barriers (kcal mol⁻¹) and variations of bond lengths $[\Delta d(C=C), \Delta d(C=X), \text{ in } \text{Å}]$ in H₂C=CH-X upon rotation (I) \rightarrow (II) of the substituent, MP2/6-31G*//6-31G*.

$\Delta d(C=C)$	$\Delta d(C-X)$	Rotational barrier
-0.0089	0.0173	7.7
-0.0064	0.0351	5.0c
-0.0071	0.0372	5.6
-0.0034	0.0162	4.2
+0.0012	-0.0012	-0.5 ^d
-0.0012	0.0250	2.2e
-0.0008	0.0195	2.0
	$ \begin{array}{c} H \\ H \\ \hline C = C \\ H \\ \hline H \hline \hline H \\ \hline H \\ \hline H \hline $	$\begin{array}{c} \begin{array}{c} H \\ H \\ H \\ \end{array} \\ \begin{array}{c} C = C \\ H \\ \end{array} \\ \begin{array}{c} H \\ H \\ \end{array} \\ \begin{array}{c} Ad(C = C) \\ -0.0089 \\ 0.0173 \\ -0.0064 \\ 0.0351 \\ -0.0071 \\ 0.0372 \\ -0.0034 \\ 0.0162 \\ +0.0012 \\ -0.0012 \\ -0.0012 \\ -0.0012 \\ -0.0012 \\ -0.0012 \\ 0.0250 \\ -0.0008 \\ 0.0195 \end{array}$

^a Initial conformation: dihedral angle \checkmark CCOH = 0°. ^b The PH₂ group was constrained to be planar. ^c 6-31G*//6-31G*. ^d MP4/6-31G*//6-31G* including Z.P.E. ^e MP4/6-31G*//6-31G*.

 $p\pi$ -donation[†] is usually decreased, since the phosphorus lone pair is bent away from the π system at the adjacent centre. $p\pi$ -Overlap[†] becomes negligible as a consequence.¹²

This work was supported at Erlangen by the Fonds der Chemischen Industrie and the Deutsche Forschungsgemein-

 $[\]dagger$ As is generally the case, ¹¹ population analysis shows $(d-p)\pi$ interactions to be unimportant for interactions involving second row elements.

Table 3. PH₂ group inversion and rotational barriers (kcal mol^{-1}) of selected compound.

Initial conformation	Twisted conformation	ΔE (rotation)	inversion ΔE (inversion)	
(1b)	(1a)	-0.47^{a}	32.14ª	
planar, $C_{\rm s}$	PH_2 planar, C_s	2.16 ^b		
C_1	$C_{\rm s}$	0.0c		
C_1	$C_{\rm s}$	1.4°		
C_1	$C_{\rm s}$	3.44°	23.8°	
planar, C _s	PH_2 planar, C_s	17.6°		
			36.6 ^b	
$C_{\rm s}$	$C_{\rm s}$	10.6 ^d	4.2 ^d	
planar, C _{2v}	PH_2 planar, C_{2v}	40.0 ^d		
$C_{\rm s}$	$C_{\rm s}$	3.9 ^b	9.8 ^ь	
planar, C _{2v}	PH_2 planar, C_{2v}	11.4 ^b		
planar, C _{2v}	$C_{\rm s}$	31.4ь		
PH_2 twisted, C_s			67.5 ^ь	
$C_{\rm s}$	C_1	0.9 ^d	2.72 ^d	
$C_{\rm s}$	C_1	-9.0 ^{e,f}		
	Initial conformation (1b) planar, C_s C_1 C_1 planar, C_s planar, C_s planar, C_{2v} C_s planar, C_{2v} planar,	RotationInitial conformationTwisted conformation(1b)(1a)planar, C_s PH2 planar, C_s C_1 C_s C_1 C_s C_1 C_s C_1 C_s C_1 C_s planar, C_s PH2 planar, C_s C_s C_s C_s C_s planar, C_{2v} PH2 planar, C_{2v} C_s C_s planar, C_{2v} PH2 planar, C_{2v} C_s C_s C_s C_1	Rotation Initial conformation Twisted conformation ΔE(rotation) (1b) (1a) -0.47^a planar, C_s PH ₂ planar, C_s 2.16 ^b C_1 C_s 0.0 ^c C_1 C_s 3.44 ^c planar, C_s PH ₂ planar, C_s 17.6 ^c C_s C_s 10.6 ^d planar, C_{2v} PH ₂ planar, C_{2v} 40.0 ^d C_s C_s 3.9 ^b planar, C_{2v} PH ₂ planar, C_{2v} 11.4 ^b planar, C_{2v} PH ₂ planar, C_{2v} 11.4 ^b planar, C_{2v} PH ₂ planar, C_{2v} 11.4 ^b planar, C_{2v} C_s C_s 0.9^d C_s C_1 0.9^d C_s C_1	

^a MP4/6-31G*//6-31G* including Z.P.E. ^b MP4/6-31G*//6-31G*. ^c MP2/6-31G*//3-21+G. ^d MP2/6-31G*//6-31G*. ^e MP4/6-31+G*. ^f Ref. 10.

schaft and benefited from generous assistance by the Convex corporation. C. S. thanks the Verband der Chemischen Industrie/Stiftung Volkswagenwerk for a Kekulé grant.

Received, 8th April 1987; Com. 459

References

- 1 P. v. R. Schleyer, E. D. Jemmis, and G. W. Spitznagel, J. Am. Chem. Soc., 1985, 107, 6393.
- 2 (a) F. Bernardi, A. Bottoni, and A. Venturini, J. Am. Chem. Soc., 1986, 108, 5395; (b) W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, 'Ab Initio Molecular Orbital Theory,' Wiley Interscience, New York, 1982, p. 348; (c) P. v. R. Schleyer and C. Schade, unpublished results.
- 3 W. Egan, R. Tang, G. Zon, and K. Mislow, J. Am. Chem. Soc., 1970, 92, 1442.

- 4 W. Schäfer, A. Schweig, and F. Mathey, J. Am. Chem. Soc., 1976, 98, 407.
- 5 M. C. Lasne, J. L. Ripoll, and A. Thuilier, J. Chem. Soc., Chem. Commun., 1986, 1428.
- 6 S. Saebo and L. Radom, J. Mol. Struct. THEOCHEM., 1982, 89, 227.
- 7 Calculations were carried out on a CONVEX C1 computer using the GAUSSIAN 82 program package, see ref. 2b.
- 8 P. v. R. Schleyer and A. Kos, Tetrahedron, 1983, 39, 1141.
- 9 R. S. Mulliken, J. Chem. Phys., 1955, 23, 1833; 1841; 2338; 2343.
- 10 G. W. Spitznagel, Dissertation, Universität Erlangen-Nürnberg, 1985.
- 11 See P. v. R. Schleyer and P. D. Stout, J. Chem. Soc., Chem. Commun., 1986, 1373; A. E. Reed and P. v. R. Schleyer, J. Am. Chem. Soc., in the press.
- 12 These conclusions are general for related systems, e.g., P. v. R. Schleyer, U. Edlund, T. Lejon, T. Venkatachalam, and E. Buncel, *Chem. Phys. Lett.*, submitted for publication.