Rational Synthesis of Dinuclear Complexes of Platinum(ι) and Platinum(ι) containing Bridging Ortho-metallated Triphenylphosphine Ligands from the Monomeric Bis(chelate) Platinum(ι) Complex Pt(o-C₆H₄PPh₂)₂

Martin A. Bennett,* David E. Berry, Suresh K. Bhargava, Evert J. Ditzel, Glen B. Robertson, and Anthony C. Willis

Research School of Chemistry, Australian National University, Canberra, A.C.T. 2601, Australia

Comproportionation of Pt(PPh₃)₃ and the bis(chelate) complex Pt(o-C₆H₄PPh₂)₂ gives a dinuclear complex Pt₂(μ -o-C₆H₄PPh₂)₂(PPh₃)₂ which is shown by X-ray crystallography to contain two *ortho*-metallated triphenylphosphine ligands bridging a Pt^I-Pt^I bond [Pt-Pt 2.630(1) Å]; addition of iodine gives a salt [Pt₂(μ -I)(μ -o-C₆H₄PPh₂)₂(PPh₃)₂]I, the cation of which has an A-frame structure [Pt-Pt 2.931(2) Å].

Co-ordinated triphenylphosphine can undergo *ortho*-metallation to give either complexes containing a four-membered ring, M–o-C₆H₄PPh₂,¹ or dinuclear complexes in which the fragment o-C₆H₄PPh₂ bridges two metal atoms, *e.g.* Rh₂-(μ -OAc)₂(μ -o-C₆H₄PPh₂)₂L₂ (L = AcOH, py)² and Os₂Cl₂-(μ -O₂CR)₂(μ -o-C₆H₄PPh₂)₂.³ Tertiary t-butylarylphosphines readily form cycloplatinated derivatives of the first type,⁴ but there is only one well-established example of cycloplatination of triphenylphosphine, *viz.* the isomerisation of Pt(PPh₃)₂-(η ²-MeO₂CC₂CO₂Me) to Pt(o-C₆H₄PPh₂){ σ -E-C(CO₂Me)- =CH(CO₂Me)}(PPh₃) on heating in toluene.⁵ Thermolysis of various platinum(II)- or platinum(0)-triphenylphosphine complexes has been claimed to give cycloplatinated products,^{6–8} but detailed structural information is lacking. A potentially more general route to cyclometallated derivatives of PPh₃ is the reaction of (*o*-lithiophenyl)diphenylphosphine, *o*-LiC₆H₄PPh₂, with metal halides. This procedure has already provided the first dinuclear complexes of gold(I) and gold(II) containing μ -o-C₆H₄PPh₂⁹ and we show here that it gives monomeric and dimeric *ortho*-metallated platinum complexes

Scheme 1. Reagents: i, o-LiC₆H₄PPh₂ in diethyl ether; ii, Pt(PPh₃)₃ in refluxing toluene; iii, I₂ in CH₂Cl₂.

that are not readily obtainable from triphenylphosphine itself. The reactions are outlined in Scheme 1.

The lithium derivative, o-LiC₆H₄PPh₂, which is formed as a diethyl ether solvate from o-BrC₆H₄PPh₂ and BuⁿLi,¹⁰ reacts with either *cis*- or *trans*-PtCl₂(SEt₂)₂ (2:1 mol ratio) in diethyl ether at -30 °C to give Pt(o-C₆H₄PPh₂)₂ (1) as a colourless, crystalline, air-stable solid in 70% yield. Compound (1) is monomeric in CH₂Cl₂ (osmometry) and its i.r. spectrum shows characteristic *ortho*-metallation bands at 1560(w) and 724(s) cm^{-1.11} The 24.3 MHz ³¹P{¹H} n.m.r. spectrum in C₆D₅CD₃ shows a singlet with ¹⁹⁵Pt satellites at δ -52.3 [*J*(PtP) 1352 Hz], the shielding of which suggests the presence of four-membered chelate rings.¹² Single crystal *X*-ray analysis† confirms the bis(chelate) monomeric structure, the metal atom and the ligand donor atoms being almost coplanar and the phosphorus atoms being mutually *cis* (Figure 1). The five-membered ring analogue of (1), Pt(o-CH₂C₆H₄PPh₂)₂,

† C₃₆H₂₈P₂Pt, (1) M = 717.65, triclinic, $P\overline{1}$, a = 9.328(1), b = 11.311(1), c = 14.574(2) Å, $\alpha = 79.44(1)$, $\beta = 86.16(1)$, $\gamma = 74.75(1)^\circ$, Z = 2; Philips PW1100 diffractometer, $\lambda = 0.7107$ Å; R = 0.020, $R_w = 0.022$ for 5713 unique reflections [3 < 2θ < 55°, $I \ge 3\sigma(I)$], 352 parameters, H atoms by calculation.

C₇₂H₅₈P₄Pt₂·2H₂O·CH₂Cl₂, (**2a**) M = 1643.24, monoclinic, C2/c or Cc, a = 25.937(4), b = 12.085(2), c = 22.752(1) Å, $\beta = 109.336(7)^\circ$, Z = 4; Philips PW1100 diffractometer, $\overline{\lambda} = 0.7107$ Å; refined in C2/c, site symmetry 2, R = 0.079, $R_w = 0.107$ for 5199 unique reflections [$4 < 2\theta < 55^\circ$, $I \ge 3\sigma(I)$], 383 parameters, H atoms by calculation, solvent H not included, CH₂Cl₂ occupancy factor = 0.5 specified. Structure possibly affected by disorder or pseudosymmetry (Cc pseudo C2/c), ring atom thermal parameters unexpectedly high (U_{max}^2 ca. 0.4 Å²) with patterns suggesting large librational modes, attempted refinement in Cc unsuccessful.

 $C_{72}H_{58}I_2P_4Pt_2\cdot CH_2Cl_2$, (4), M = 1776.07, monoclinic, $P2_1/c$, a = 12.365(1), b = 29.988(3), c = 18.113(2) Å, $\beta = 98.65(1)^{\circ}$, Z = 4; Philips PW1100 diffractometer, $\bar{\lambda} = 0.7107$ Å; R = 0.067, $R_w = 0.070$ for 4118 unique reflections [$4 < 2\theta < 45^{\circ}$, $I \ge 3\sigma(I)$], 381 parameters, H atoms by calculation, solvent H not included, solvent rotationally disordered, 1×0.5 and 1×0.25 occupancy factor fragments included.

Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

Figure 1. Molecular structure of $Pt(o-C_6H_4PPh_2)_2$ (1) (50% ellipsoids). Selected dimensions: Pt-P 2.297(1), Pt-C 2.063(2) Å; P-Pt-P 116.25(3), P-Pt-C 68.73(7), C-Pt-C 106.3(1)°.

Figure 2. Molecular structure of $Pt_2(\mu-o-C_6H_4PPh_2)_2(PPh_3)_2$ (2a) viewed down the crystallographically imposed two-fold rotation axis (50% ellipsoids; ring atoms as 0.1 Å radius spheres for clarity). Selected dimensions: Pt-Pt 2.630(1), Pt-P(*trans*-Pt) 2.300(4), Pt-P(*trans*-C) 2.282(4), Pt-C 2.07(2) Å.

exists as a *cis*-isomer in diethyl ether, but in benzene a mixture of *cis*- and *trans*-isomers is present.¹³

Heating (1) with Pt(PPh₃)₃ in toluene for 12 h causes comproportionation and opening of the four-membered rings to form the diplatinum(1) complex Pt₂(μ -o-C₆H₄PPh₂)₂(PPh₃)₂ (2), which shows the expected molecular weight in CH₂Cl₂ (osmometry) and *ortho*-metallation bands at 1560(w) and 725(s) cm⁻¹. The ³¹P{¹H} n.m.r. spectrum of (2) consists of an AA'BB' pattern with complex satellites arising from isotopomers containing one and two ¹⁹⁵Pt nuclei; the derived P-P and Pt-P coupling constants[‡] are similar to those

 $[\]ddagger 3^{1}P{^{1}H}$ N.m.r. data at 80.98 MHz for (2) (in CH₂Cl₂, chemical shift to high frequency of external 85% H₃PO₄): $\delta_{A} - 2.6$, $\delta_{B} 25.4$ p.p.m., $J(AA') \pm 55$, J(AB) 10, J(AB') 10, $J(BB') \pm 226$, J(AX) - 140, J(BX)1149, J(AX') 1937, J(BX') 1866 Hz, where P_A, P_A are the phosphorus atoms in the cyclometallated ring, P_B, P_{B'}, are the phosphorus atoms of the PPh₃ ligands, and the arrangement of Pt_{X,X'} is B(A)X'-X(A')B'.

⁽⁴⁾ (CH_2CI_2) : δ_A 5.6, δ_B 15.5 p.p.m., J(AA') 29, J(AB) 20, J(AB') 0, J(BB') 0, J(AX) 0, J(BX) 123, J(AX') 1677, J(BX') 5065 Hz.

Figure 3. Molecular structure of the cation of $[Pt_2(\mu-I)(\mu-o-C_6H_4PPh_2)_2(PPh_3)_2]I$ (4) (50% probability surfaces). Selected dimensions: Pt-Pt 2.931(2), Pt-P(*trans*-I) 2.268(6), Pt-P(*trans*-C) 2.375(6), Pt-I 2.706(2), Pt-C 2.046(3), 2.090(2) Å.

of the complex $Pt_2\{\mu - o - C_6H_4P(Ph)CH_2CH_2PPh_2\}_2$ (3) obtained by heating Pt(OH)Me(Ph₂PCH₂CH₂PPh₂) in methanol.¹⁴ Slow recrystallisation of (2) from dichloromethane in the presence of moist air yields a solvate $Pt_2(\mu$ -o- $C_6H_4PPh_2)_2(PPh_3)_2 \cdot 2H_2O \cdot CH_2Cl_2$ (2a). A single crystal X-ray study of (2a)† at -135 °C shows (Figure 2) that the two o-C₆H₄PPh₂ units bridge two planar co-ordinated platinum atoms which are 2.630(1) Å apart, cf. 2.628(1) Å in (3). As in (3), the Pt–P bonds *trans* to platinum (2.300 Å) are longer than those trans to carbon (2.282 Å), reflecting the high transinfluence of the Pt-Pt bond. Consistent with this interpretation, the axial PPh₃ ligands of (2) are readily displaced by other ligands without disruption of the bridging cyclometallated framework to give a range of platinum(1) dimers $Pt_2(\mu - o - C_6H_4PPh_2)_2L_2$ (L = PMe₃, PEt₃, PMe₂Ph, PMePh₂, and Bu¹NC).

Like (3), the new complexes readily undergo oxidative additions, e.g. reaction of (2) with iodine and recrystallisation of the product from dichloromethane-hexane affords orangered crystals of the 1:1 adduct $[Pt_2(\mu-I)(\mu-o-C_6H_4PPh_2)_2-(PPh_3)_2]I\cdotCH_2Cl_2$ (4).‡ X-Ray analysis shows that the cation is a typical A-frame molecule containing two approximately planar co-ordinated platinum(II) atoms symmetrically bridged by two $o-C_6H_4PPh_2$ units and by an iodine atom (Figure 3).† The presence of the iodine causes the Pt-Pt distance in (4) [2.931(2) Å] to be greater than that in (2), the Pt-I-Pt angle being only 65.56(5)°. The basic geometry is very similar to that the μ-methylene complex of $Pt_2(\mu-CH_2)\{\mu-o C_6H_4P(Ph)CH_2CH_2PPh_2$, in which the Pt-Pt distance is 2.915(1) Å and the Pt- \dot{CH}_2 -Pt angle [88.9(4)°] is much less than the normal tetrahedral value.¹⁵ A similar arrangement is also found in the cation $[Rh_2(\mu-Cl)(CO)_2 (\mu = Ph_2PCH_2PPh_2)_2]^+$, where the Rh-Cl-Rh angle is 82.38(5)°,16 the opening-out presumably being due to the shorter metal-halogen and longer metal-metal distances in the dirhodium cation relative to (4).

We thank Dr. Keith Dixon for access to his n.m.r. simulation programme and the University of Victoria for leave of absence (D. E. B.).

Received, 22nd April 1987; Com. 538

References

- M. I. Bruce, Angew. Chem., Int. Ed. Engl., 1977, 16, 73; I. Omae, Coord. Chem. Rev., 1980, 32, 235.
- 2 A. R. Chakravarty, F. A. Cotton, D. A. Tocher, and J. H. Tocher, *Organometallics*, 1985, 4, 8.
- 3 A. R. Chakravarty, F. A. Cotton, and D. A. Tocher, *Inorg. Chem.*, 1984, 23, 4697.
- 4 A. J. Cheney, B. E. Mann, B. L. Shaw, and R. M. Slade, J. Chem. Soc. A, 1971, 3833.
- 5 H. C. Clark and K. E. Hine, J. Organomet. Chem., 1976, 105, C32.
- 6 D. M. Blake and C. J. Nyman, Chem. Commun., 1969, 483.
- 7 F. Glockling, T. McBride, and R. J. I. Pollock, J. Chem. Soc., Chem. Commun., 1973, 650.
- 8 S. Sostero, O. Traverso, M. Lenarda, and M. Graziani, J. Organomet. Chem., 1977, 134, 259.
- 9 M. A. Bennett, S. K. Bhargava, K. D. Griffiths, G. B. Robertson, W. A. Wickramasinghe, and A. C. Willis, *Angew. Chem.*, *Int. Ed. Engl.*, 1987, 26, 258.
- 10 J. G. Hartley, L. M. Venanzi, and D. C. Goodall, J. Chem. Soc., 1963, 3930; R. Talay and D. Rehder, Z. Naturforsch., Teil B, 1981, 36, 451.
- 11 M. A. Bennett and D. L. Milner, J. Am. Chem. Soc., 1969, 91, 6983; D. J. Cole-Hamilton and G. Wilkinson, J. Chem. Soc., Dalton Trans., 1977, 797.
- 12 P. E. Garrou, Chem. Rev., 1981, 81, 229.
- 13 H-P. Abicht and K. Issleib, J. Organomet. Chem., 1978, 149, 209.
- 14 D. P Arnold, M. A. Bennett, M. S. Bilton, and G. B. Robertson, J. Chem. Soc., Chem. Commun., 1982, 115.
- 15 D. P. Arnold, M. A. Bennett, G. M. McLaughlin, and G. B. Robertson, J. Chem. Soc., Chem. Commun., 1983, 34.
- 16 M. Cowie and S. K. Dwight, Inorg. Chem., 1979, 18, 2700.