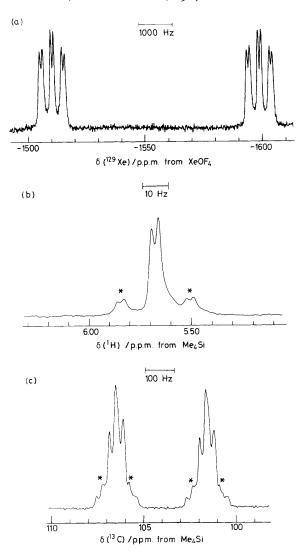
Fluoro(nitrile)xenon(II) Cations, RC≡N–XeF⁺ AsF₆⁻ (R = H, CH₃, CH₂F, C₂H₅, C₂F₅, C₃F₇, or C₆F₅); Novel Examples of Xenon–Nitrogen Bonds and ¹²⁹Xe–¹³C, ¹²⁹Xe–¹H, and ¹²⁹Xe–¹⁴N Nuclear Spin–Spin Couplings

Adel A. A. Emara and Gary J. Schrobilgen*

Department of Chemistry, McMaster University, Hamilton, Ontario L8S 4M1, Canada

A new class of Xe–N bonded compound results from the interaction of the electron lone pair of a nitrile with the Lewis acid, XeF+; the cationic adducts, RC \equiv N–XeF+, have been derived from the interaction of the appropriate nitrile with either XeF+AsF₆- or Xe₂F₃+AsF₆- in anhydrous HF at low temperature and characterized in the solid state by Raman spectroscopy (for R = H and Me) and in HF solution by ¹²⁹Xe, ¹⁹F, ¹⁴N, ¹³C, and ¹H n.m.r. spectroscopy.


Herein we report a new ligand group for xenon which is bonded to the noble gas atom through nitrogen. In choosing a likely ligand precursor for a Xe-C or Xe-N bond, the very weak protonic acid HCN was considered and initially found to be unreactive towards XeF₂ in SO₂ClF at room temperature by the usual HF displacement to give the Xe-C and Xe-N bonded compounds, FXe(CN) and Xe(CN)₂. Although the conventional HF displacement is not a viable route to xenon(II) cyanides and isocyanides, we have found that HCN, and nitriles in general, behave as nitrogen bases towards the XeF+ cation.

The reactions of $XeF^+AsF_6^-$ and $Xe_2F_3^+AsF_6^-$ with HCN, CH₃CN, CH₂FCN, C₂H₅CN, C₂F₅CN, C₃F₇CN, and C₆F₅CN were carried out by combining stoicheiometric amounts of the reactants in anhydrous HF and warming to -20 to -10 °C to effect reaction and dissolution in the solvent (HCN reactions were also conducted in SO₂ClF solvent). The reactions proceed according to equations (1) and (2).

$$XeF^+AsF_6^- + RC\equiv N: \longrightarrow RC\equiv N-XeF^+AsF_6^-$$
 (1)

$$Xe_2F_3^+AsF_6^- + (1) \longrightarrow (2) + XeF_2$$
 (2)

Multinuclear magnetic resonance spectra were recorded for the nitrile cations in HF solvent, and in the case of the ¹H and ¹²⁹Xe n.m.r. spectra of the HC≡N-XeF+ cation, in BrF₅ solvent. As every element in the RC=N-XeF+ cations studied possesses at least one nuclide which is suitable for observation by n.m.r. spectroscopy, n.m.r. studies using both naturally abundant and ¹³C enriched compounds were undertaken and have provided unambiguous proof for the structures of a majority of the cations in solution (Table 1). In the case of HC≡N-XeF+, the chemical shifts of all five nuclei and eight of the ten possible spin-spin couplings that have been observed are listed in Table 1. The ¹²⁹Xe, ¹⁴N, ¹³C, and ¹H spectra are illustrated in Figures 1 and 2. The couplings, ${}^{1}J({}^{129}Xe^{-14}N)$, ${}^2J({}^{129}\text{Xe}-{}^{13}\text{C})$, and ${}^3J({}^{129}\text{Xe}-{}^{1}\text{H})$, represent the first examples of nuclear spin-spin couplings observed between these nuclides. Owing to the cylindrical symmetry of the C≡N-Xe-F moiety in the new cation series, low viscosity of the HF solvent medium, and the small quadrupole moment of ¹⁴N, quadrupole relaxation of the ¹²⁹Xe-¹⁴N coupling is found to be minimal giving rise to slightly quadrupole collapsed 1:1:1 triplets in the ¹²⁹Xe spectra and ¹²⁹Xe satellites in the ¹⁴N spectra (Figures 1 and 2). The similarities of ${}^{1}J({}^{129}Xe^{-14}N)$ and ${}^{1}J({}^{129}Xe^{-19}F)$ values to those of the HC \equiv N-XeF $^{+}$ cation

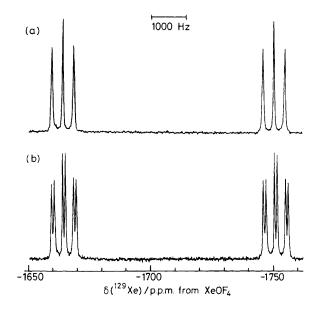


Figure 1. N.m.r. spectra of HC \equiv N-XeF+AsF₆⁻: (a) 129 Xe spectrum for a 99.2% 13 C enriched sample recorded in HF solvent at $-10\,^{\circ}$ C; (b) 1 H spectrum for a natural abundance sample recorded in BrF₅ solvent at-58 $^{\circ}$ C at 1.8790 T; (c) 13 C spectrum for a 99.2% 13 C enriched sample recorded in HF at $-10\,^{\circ}$ C. Asterisks (*) denote 129 Xe satellites

also allow analogous structures to be assigned to the alkyl-, fluoroalkyl- and pentafluorobenzonitrile cations.

The observation of ${}^{1}J({}^{129}\text{Xe}{}^{-14}\text{N})$ in both the ${}^{14}\text{N}$ and ${}^{129}\text{Xe}$ spectra is particularly noteworthy and provides conclusive proof that in each case the nitrogen atom is directly bonded to xenon. This is confirmed by comparing their respective reduced coupling constants, ${}^{1}K(\text{Xe-N})$ (calculated using the expression given in refs. 1—3; (see Table 1), with that of $\text{FXeN}(\text{SO}_2\text{F})_2$ [${}^{1}J({}^{129}\text{Xe}{}^{-15}\text{N})$ 307 Hz; ${}^{1}K(\text{Xe-N})$ 0.913 × 10²² NA $^{-2}$ m $^{-3}$]. In addition, the small value of the J-coupling, ${}^{129}\text{Xe}{}^{-13}\text{C}$, observed for the ${}^{13}\text{C}$ enriched sample of H $-\text{C}\equiv\text{N-XeF+}$, and a one-bond ${}^{13}\text{C}{}^{-1}\text{H}$ coupling, also confirm that the xenon atom is not bonded to carbon in this species.

Assuming that the Xe–N spin-spin couplings in xenon-nitrogen compounds are dominated by the Fermi contact term, a comparison of ${}^{1}K(\text{Xe-N})$ values for R–C \equiv N–XeF+ with that of the trigonal planar sp²-hybridised nitrogen atom in FXeN(SO₂F)₂¹ allows assessment of the relative degrees of hybridisation for the nitrogen orbitals used in bonding to

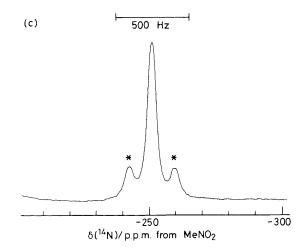


Figure 2. N.m.r. spectra of CH₃C \equiv N-XeF⁺AsF₆⁻ recorded in HF solvent at -10 °C: (a) and (b) are 129 Xe spectra, where (a) is natural abundance and (b) is 99.7% 13 C enriched at the 2-carbon; (c) natural abundance 14 N spectrum. Asterisks (*) denote 129 Xe satellites.

xenon. The ratios of $[{}^{1}K(Xe-N)]_{sp}$ to $[{}^{1}K(Xe-N)]_{sp}{}^{2}$ are 1.42—1.53 for the cations listed in Table 1, in excellent agreement with the theoretical ratio, 1.50, calculated from the predicted fractional s-characters of the nitrogen orbitals used in bonding to xenon.

In the case of the perfluoroalkyl derivatives ($R = C_2F_5$ and C_3F_7), the Xe–N bonds are found to be labile on the n.m.r. time scale in HF solvent at temperatures down to -30 °C as a result of a decrease in base strength for RC \equiv N: with increasing fluorine substitution at C-2.

The salts $HC\equiv N-XeF^+AsF_6^-$ and $CH_3C\equiv N-XeF^+AsF_6^-$ were isolated from HF solvent by pumping the solutions under vacuum at -50 to -30 °C to give white solids whose Raman spectra were recorded at -196 °C (514.5 nm excitation). The Raman spectrum of $HC\equiv N-XeF^+AsF_6^-$ was assigned in detail while only key frequencies of $CH_3C\equiv N-XeF^+AsF_6^-$ have presently been assigned. In addition to the three Raman active

Table 1. N.m.r. parameters^a for RC≡N-XeF⁺ cations.

Chemical shiftsb

R	$\delta(^{129}\text{Xe})$	$\delta(^{19}\mathrm{F})^c$	$\delta(^{14}N)$	$\delta(^{13}C)$	$\delta({}^{\scriptscriptstyle 1}H)$
H_q	-1552 -1569°	-198.4	-235.4	104.1	6.01 5.67 ^f
CH_2F	-1541	-198.4 (XeF) -241.7 (CF)	-229.2		5.44
CH ₃	-1708	-185.5	-251.1	115.3 (CN)g 0.6 (CH ₃)h	2.41
C_2H_5	-1717	-184.6	-251.9	3,	1.29 (CH ₃) 2.80 (CH ₂)
$C_6F_5^i$	-1426				2.00 (0112)

Coupling Constants

	HC≣N-XeF+c	CH₂FC≣N-XeI	F+ CH ₃ C≣N–XeF+	$^{\text{f,g}}$ $C_2H_5C\equiv N-XeF^+$	$C_6F_5C\equiv N-XeF^+$
$^{1}J(^{129}Xe^{-14}N)$	334	333	313	311	
$^{1}J(^{129}\text{Xe}-^{19}\text{F})$	6150 (6181)e	6163	6020	6017	6610
$^{1}J(^{14}N-^{13}C)$	22				
${}^{1}J({}^{13}C-{}^{1}H)$	308		141		
$^{2}J(^{129}Xe^{-13}C)$	84		79		
$^{2}J(^{19}F_{-}^{1}H)$		44			
$^{2}J(^{19}F^{-14}N)$			18		
$^{3}J(^{129}\text{Xe}-^{1}\text{H})$	26.8				
$^{3}J(^{19}F-^{13}C)$	18		19		
$^{3}J(^{1}H-^{1}H)$				7.5	
$^{4}J(^{19}F-^{1}H)$	2.6				
${}^{1}K(Xe-N)$	1.393×10^{22}	1.389×10^{22}	1.305×10^{22}	1.297×10^{22}	

^a Spectra were recorded in anhydrous HF at -10 °C using 9 mm o.d. FEP sample tubes at 5.8719 T, and spectrometer frequencies (MHz): 129 Xe 69.563, 19 F 235.361, 14 N 18.075, 13 C 62.915, 14 H 250.132. 18 Samples were referenced externally at 24 °C with respect to the neat liquid references: XeOF₄ (129 Xe), CFCl₃ (19 F), CH₃NO₂ (14 N), SiMe₄ (13 C and 14 H). A positive chemical shift denotes a resonance occurring to high frequency of the reference compound. c All 19 F spectra displayed a broad saddle-shaped feature at *ca.* −68 p.p.m. arising from the partially quadrupole collapsed 75 As− 19 F coupling of the octahedral AsF₆[−] anion. d Sample prepared from 99.2% 13 C enriched H¹³CN. e Measured in BrF₅ solvent at −58 °C; the 1 J(129 Xe− 14 N) coupling was found to be completely quadrupole collapsed under these conditions. The sample was prepared by redissolving solid HC≡N–XeF+AsF₆[−], prepared in HF solvent, in BrF₅ at −50 °C. f Measured in a 5 mm o.d. precision glass tube in BrF₅ solvent at −58 °C, at 80.022 MHz (1.8790 T) for 1 H. The sample was prepared by redissolving solid HC≡N–XeF+AsF₆[−], prepared in HF solvent, in BrF₅ at −50 °C. g Sample prepared from 99.7% 13 C enriched CH₃ 13 CN. h Sample prepared from 99.7% 13 C enriched 13 CN. h Sample prepared from 99.7% 13 C enriched 13 CN. 1 Decomposition occurred at −10 to −20 °C, preventing fuller characterisation. 1 J values in Hz; K values in NA $^{-2}$ m $^{-3}$.

modes consistent with an octahedral AsF_6 anion at 679(50), $v_1(a_{1g})$; 581(13), $v_2(e_g)$; 371(15), $v_5(t_{2g})$ cm⁻¹; and the formally Raman inactive modes $v_3(t_{1u})$ at 692(12) and $v_4(t_{1u})$ at 244(1), 269(6), 280(14) cm⁻¹; the most prominent features of the linear HC=N-XeF+ cation spectrum are the factorgroup-split C≡N stretch at 2159(41) and 2163(18) cm⁻¹ and a pair of intense lines at 559(100) and 569(94) cm⁻¹ assigned to the factor-group-split Xe-F stretch. ¹³C enrichment (99.2%) confirms the assignment of $v(C \equiv N)$ (isotopic shift, 31.6 cm⁻¹) and the split, doubly degenerate bend $\delta(C \equiv N - Xe)$ at 327(4), 334(2) cm⁻¹ (isotopic shift, 5.5 cm⁻¹; also cf. the N \equiv C–I bend in ICN at 304 cm⁻¹).⁴ A low-frequency shoulder on v_5 of the anion at 368 cm⁻¹ was tentatively assigned to the Xe-N stretch (cf. v(Xe-N) of $FXeN(SO_2F)_2$ at $422 \text{ cm}^{-1})^1$ and a weak band at 3141(4) cm⁻¹ was assigned to v(C-H) (cf. the C-H stretching frequency of gaseous HC≡N, 3311 cm⁻¹.)⁵ The remaining features were assigned to the doubly degenerate bends $\delta(F-Xe-N)$ [116(33), 133(10), 157(5), 180(2) cm⁻¹] and $\delta(H-C\equiv N)$ [706(1) cm⁻¹]. Preliminary assignments of some key frequencies for the CH₃C≡N-XeF+ cation spectrum were made by comparison with those of CH₃C≡N⁶ and $HC\equiv N-XeF^+: \nu_{asym}(CH_3), 3013(6), 3021(7), 3027(4) cm^{-1};$ $v_{\text{svm}}(\text{CH}_3)$, 2944(19), 2949(19) cm⁻¹; $v_{\text{asym}}(\text{CH}_3)$, 2335(16) cm^{-1} ; v(XeF), 559(100), 570(74), 571(34) cm^{-1} ; δ (F–Xe–N), 160(7), 170(6) cm⁻¹.

Additional examples of nitriles and other inorganic and organic nitrogen bases are under active investigation as potential electron-pair donors towards noble gas-cations, as well as representative X-ray crystal structures containing the $RC\equiv N-XeF^+$ cations.

This research was sponsored by the United States Air Force Astronautics Laboratory, Edwards Air Force Base, California (Contract F49620-87-C-0049) and a Natural Sciences and Engineering Research Council of Canada (N.S.E.R.C.C.) operating grant.

Received, 9th June 1987; Com. 797

References

- J. F. Sawyer, G. J. Schrobilgen, and S. J. Sutherland, *Inorg. Chem.*, 1982, 21, 4064.
- 2 G. A. Schumacher and G. J. Schrobiligen, *Inorg. Chem.*, 1983, 22, 2178.
- 3 R. Faggiani, D. K. Kennepohl, C. J. L. Lock, and G. J. Schrobilgen, *Inorg. Chem.*, 1986, 25, 563.
- 4 S. Hemple and E. R. Nixon, J. Chem. Phys., 1967, 47, 4273.
- H. C. Allen, E. D. Tidwell, and E. K. Plyler, J. Chem. Phys., 1956, 25, 302.
- 6 J. E. Griffiths in 'Vibrational Spectra and Structure,' ed. J. R. Durig, Elsevier, New York, 1977, vol. 6, p. 333.