Quantitative Thermal Rearrangement of an Eleven-vertex Metalladicarbaborane to give the Isomeric Cluster *nido*-[2-(η ⁶-C₆Me₆)-8,10-Me₂-2,8,10-OsC₂B₈H₈] with an **Unexpected BCBCB Open Face**

Mark Bown, Xavier L. R. Fontaine, Norman N. Greenwood, John D. Kennedy, and Mark Thornton-Pett School *of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.*

The molecular structure of the title compound exhibits a five-rnembered **bCBCb** open face and is thereby fundamentally different from the closo-nature previously assumed and generally accepted for this type of polyhedral metalladicarbaborane cluster compound.

It has hitherto been assumed that the eleven-vertex
metalladicarbaboranes such as $[(C_5H_5)CoC_2B_8H_{10}]$,¹ metalladicarbaboranes such as $[(C_5H_5)CoC_2B_8H_{10}]$,¹
 $[(PPh_3)_2HIrC_2B_8H_{10}]$,² $[(C_6H_6)RuC_2B_8H_{10}]$,³ *etc*. have $[(C_6H_6)RuC_2B_8H_{10}]$,³ *etc.* have straightforward closed deltahedral eleven-vertex geometries like (I) because they have straightforward *closo* electron counts and therefore obey the Williams-Wade clustergeometry4 and electron-counting5 rules.

We now report that the experimentally determined molecular structure of an isomer of the eleven-vertex osmadicarbaundecaborane $[(\eta^6-C_6Me_6)OsMe_2C_2B_8H_8]$ shows that this presumption is not generally valid. The orange air-stable compound is prepared quantitatively by thermal rearrangement (14 min at 400° C) of its isomer $[1-(\eta^6-C_6Me_6)-2,4\text{-}Me_2 1,2,4$ -OsC₂B₈H₈] (provisionally numbered as a *closo*-11-vertex system but not yet structurally characterized; this isomer was itself prepared by reaction of $[(\eta^6$ -C₆Me₆)OsCl₂ $]_2$ and $[5,6\text{-Me}_2C_2B_8H_{10}]$ in dichloromethane in the presence of **bis(dimethy1amino)naphthalene).** The molecular structure of

Figure 1. ORTEP drawing of the molecular structure of the title compound. Selected distances from $Os(2)$ are as follows: to $B(1)$ 225.3(7), to B(3) 219.4(7), to B(6) 218.8(7), to B(7) 211.6(7), to B(11) $212.7(7)$, and to C(aromatic)(mean) 226.1 pm. Distances between open-face atoms are as follows: $B(7)-C(8)$ 157.3(9), $C(8)-B(9)$ 208.4(9) pm. 164.6(9), B(9)-C(10) 165.2(9), C(10)-B(11) 157.4(8), B(ll)-B(7)

the 2-osma isomer is shown in Figure $1.$ † The rhodium analogue $[(\eta^5-C_5Me_5)RhMe_2C_2B_8H_8]$, identified by the extreme similarity of its n.m.r. spectroscopic properties, \ddagger is prepared similarly.

The metalladicarbaborane cluster (Figure 1) adopts a nido-configuration of the $B_{11}H_{14}$ ⁻ structural type with a five-membered BCBCB open face and with the metal atom at a non-open-face five-connected cluster position (structure 11). This is clearly fundamentally different from the closed structure (I) expected from its formal $[2n + 2]$ -electron

 $\frac{1}{2}$ *Crystal data:* $C_{16}H_{32}B_8Os$, $M = 501.12$, monoclinic, space group $P2\sqrt{n}$, $a = 913.7(1)$, $b = 1340.7(2)$, $c = 1637.1(1)$ pm, $\beta = 95.44(1)$ °, U $= 1.9965(3)$ nm³, $Z = 4$, $\mu = 61.18$ cm⁻¹, $F(000) = 968$. Scans running from 1° below $K_{\alpha 1}$ to 1° above $K_{\alpha 2}$, scan speeds 2.0-29.3° min⁻¹, and $4.0 < 20 < 50.0^{\circ}$, $T = 290$ K. All crystallographic measurements were made on a Nicolet P3/F diffractometer operating in the $\omega/2\theta$ scan mode using graphite monochromated Mo- K_{α} radiation following a procedure described elsewhere.* The data set was corrected for absorption empirically.9 The structure was solved by standard heavy atom methods and refined by full-matrix least-squares using SHELX 76.10 All methyl hydrogen atoms were included in calculated positions and assigned an overall isotropic thermal parameter. The borane hydrogen atoms were located in a Fourier difference map and were freely refined with individual isotropic thermal parameters. The weighting scheme $w = [\sigma^2(F_o) + 0.0003(F_o)^2]^{-1}$ was used at the end of refinement. Final *R* and R_w values are 0.0239 and 0.0248 (274) parameters, 3129 observed data). Atomic co-ordinates, interatomic distances and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

 $\frac{1}{4}$ *N.m.r. data:* $\delta(^{11}B)/p.p.m.,$ with respect to Et₂O BF₃, [together with $\delta(^1H)/p.p.m.$ in parentheses]; tentative assignments by [$^{11}B 11B$ -COSY, $H{11B}$, and $[1H-1H]$ -COSY n.m.r. experiments. (a) $[(C_6\text{Me}_6)\text{Os}C_2\text{Me}_2B_8\text{H}_8]:$ BH(1) $-15.9(+1.30),$ BH(3,6) $-20.7(+0.91)$, BH(4,5) +0.3(+2.85), BH(7,11) +40.0(+4.67), and
BH(9) -15.9(-0.37), (b) [(C.Me.)RhC.Me.B.H.]; BH(1) $BH(9)$ -15.9(-0.37). (b) $[(C_5Me_5)RhC_2Me_2B_8H_8]$: BH(1) $BH(7,11) +36.0(+3.78)$, and $BH(9) -14.9(+0.40)$. $-8.5(+1.56)$, BH(3,6) $-16.5(+1.50)$, BH(4,5) $+6.9(+2.73)$,

closo-count, and a rationale analogous to that⁶ invoked to account for the 'slipped' structures of certain platinadicarbaboranes does not apply in this case as the osmium centre is fully co-ordinated and does not occupy a position in the open face.

This behaviour is without precedent, and since there is no obvious a *priori* reason for expecting anything other than a straightforward closed structure, it re-emphasizes the importance of backing theoretical deliberations in this area with definitive experimental evidence.⁷

We thank the S.E.R.C. for support and for a maintenance grant (to M. B.).

Received, 18th June *1987; Corn. 852*

References

- 1 W. J. Evans and M. F. Hawthorne, J. *Am. Chem.* **SOC.,** 1971,93, 3063; C. J. Jones, J. N. Francis, and M. F. Hawthorne, *ibid.,* 1972, **94,** 8391.
- 2 C. W. Jung and **M.** F. Hawthorne, J. *Am. Chem. SOC.,* **1980,102,** 3024.
- 3 T. P. Hanusa, J. C. Huffman, T. L. Curtis, and L. J. Todd, *Inorg*. *Chem.,* 1985, **24,** 787.
- 4 R. E. Williams, *Inorg. Chem.*, 1971, 10, 210; Adv. Inorg. Chem. *Radiochem.,* 1976, **18,** 67.
- 5 K. Wade, *Chem. Commun.*, 1971, 792; Adv. Inorg. Chem. *Radiochem.,* 1976, **18,** 1.
- 6 M. Green, J. A. K. Howard, J. L. Spencer, and F. G. **A.** Stone, J. *Chem. SOC., Dalton Trans.,* 1975, 2270.
- 7 N. N. Greenwood, and R. T. Baker in 'Inorganic Chemistry: Toward the 21st Century,' A.C.S. Symposium Series 211, ed. M. H. Chisholm, American Chemical Society, Washington, D.C., 1983, pp. 346-347; R. T. Baker, *Inorg. Chem.*, 1986, 25, 109; J. D. Kennedy, *ibid.,* p. 111; R. J. Johnston and D. M. P. Mingos, *ibid.,* p. 3321.
- 8 A. Modinos and P. Woodward, J. *Chem. Soc., Dalton Trans.,* 1974, 2065.
- 9 N. Walker and D. Stuart, *Acta Crystallogr., Sect. A,* 1983,39, 158.
- 10 *G.* M. Sheldrick, SHELX 76, Program System for X-ray Structure Determination, University of Cambridge, 1976.