Stepwise Hydrogen Removal in the Enzymic Ring Expansion of Penicillin N to Deacetoxycephalosporin C

Jack E. Baldwin,* Robert M. Adlington, Robin T. Aplin, Nicholas P. Crouch, Christopher J. Schofield, and Hong-Hoi Ting

The Dyson Perrins Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QY, U.K.

Reaction of a 1:1 mixture of penicillin N and 2,2-bis(trideuteriomethyl)penicillin N with partially purified deacetoxycephalosporin C/deacetylcephalosporin C synthetase from *Cephalosporium acremonium* CO 728 resulted in preferential conversion of the protiated substrate, whereas in similar experiments with a 1:1 mixture of penicillin N and 3-deuteriopenicillin N both substrates were converted at the same rate; these results accord with a stepwise process for hydrogen removal during the ring expansion in which the methyl hydrogen is first removed.

Enzymic ring expansion of penicillin N (1a) to deacetoxycephalosporin C (DAOC) (2a) occurs with loss of two hydrogen atoms, from the 2β -methyl group¹ (H^{*}) and the C-3 position (H[•]) (Scheme 1). At present it is unknown whether these events occur in a stepwise or a concerted manner. Experiments, *in intact cell* systems, with L-valine bearing a chiral methyl group at the 3-pro-R site, as precursor gave, *via* the corresponding penicillin N, cephalosporin C (**2b**) with equal

Table 1. Enzymic conversion of (1a) + (1b).

	101 (50)												
Expt.	m/z												
	% Conversion of penicillin Ns	459	460	461	462	463	464	465	466	467	468	469	Ratio (3a): (3b)
1	0	1	94	23	9	2	0	2	100	25	10	2	0.94:1
	30	1	50	12	5	2	0	2	100	25	10	2	0.50:1
2	0	2	100	26	10	6	2	3	100	26	11	3	1.00:1
	40	0	51	14	7	4	3	2	100	28	10	1	0.51:1
	60	8	41	16	8	7	7	8	100	30	20	10	0.41:1ь

Relative intensities of molecular ions $(MH^+)^a$ for (3a)/(3b)

^a Analysis by ammonia desorption chemical ionisation (error $\pm 2\%$). ^b This value represents a *maximum* ratio which is artificially increased by a high noise level resulting from low penicillin recovery.

Table 2. Enzymic conversion of (1a) + (1c).

	Expt. 1	% Conversion of penicillin Ns 0 30 65	459 1 3	460 78 78 76	461 100 100	462 27 27 27	463 9 10	464 2 2 2	465 0 0	Ratio $(3a)$: $(3c)$ 0.95: 1 0.95: 1 0.93: 1
	2	0 30 80	1 6	96 94 93	100 100 100	27 28 28 29	10 10 9 11	2 0 2	0	1.24 : 1 1.22 : 1 1.20 : 1
^b See Table 1.										

Relative intensities of molecular ions $(MH^+)^a$

tritium content at both C-2 α and C-2 β sites.^{2,3} Utilising a partially purified sample of deacetoxycephalosporin C/deacetylcephalosporin C (DAOC/DAC) synthetase activities[†] from *Cephalosporium acremonium* CO 728, which requires Fe²⁺, ascorbate, and α -ketoglutarate for activity, we have examined the deuterium isotope effect on the conversions in Scheme 1 with the following results.

A 1:1 mixture of non-deuteriated (1a) and hexadeuteriated (1b)[‡] penicillin N was enzymically transformed§ into a mixture of DAOC (2a) and DAC (2c) along with unchanged penicillin Ns (1a and b). After purification (h.p.l.c.; reverse phase octadecylsilane, 25mm-ammonium hydrogen carbonate buffer) these penicillins were derivatised [N-ethoxycarbony] dimethyl esters (3)⁵ and their deuterium content was determined by mass spectrometry (Table 1). As can be seen in these two experiments, faster transformation of the unlabelled penicillin N (1a) was obtained, leading to an enrichment of the deuteriated species (1b) in the penicillin N pool, as a result of an isotope effect. In the presence of boiled enzyme no change in the ratio (1a): (1b) was observed over the same time period. In contrast to this result, when a 1:1 mixture of non-deuteriated penicillin N (1a) and [3-2H]penicillin N (1c)‡ was similarly transformed then no discrimination was observed (Table 2), both being consumed at the same rate.

The expression of an isotope effect, as a discrimination, in competitive mixed-label experiments is a V_{max}/K_m effect⁶ (V_{max} = max. velocity, K_m = Michaelis constant) and reflects events up to and including the first irreversible step. As no such isotope effect was observed when the deuterium was at C-3 [*i.e.* (1c)], and since the presence of this deuterium causes a marked changed in the product composition, with the formation of (4) as a major enzymic product,⁷ then together these results are most easily explained if the enzymic reaction proceeds in *two steps* and the loss of the 2-methyl hydrogen

[‡] The deuteriated penicillins (**1b** and **c**) were prepared from [(R)-5amino-5-carboxypentanoyl]-L-cysteinyl-D- $[4,4'-^2H_6]$ valine and -D- $[2-^2H_1]$ valine, respectively by enzymic synthesis utilising isopenicillin N synthetase; see ref. 4.

§ For a representative procedure, see preceding paper.

¶ This same discrimination was also found in the observed cephalosporin products, *i.e.* a relative depletion of deuterium in (2a) and (2c).

precedes the loss of the C-3 hydrogen. Presumably the entity responsible for hydrogen removal results from the interaction of Fe²⁺, dioxygen, and α -ketoglutarate as has been suggested for proline hydroxylase.8 A formal representation of these events is shown in Scheme 2, where the intermediate lying between the two C-H bond-breaking steps, as an equilibrating set of radicals, is derived by initial oxidative addition to an enzyme-iron oxo species.9 The chemical ring expansion of such a radical has recently been confirmed in a penicillin system.¹⁰ The intermediacy of such a radical formed at the 2β -methyl group of penicillin N provides an explanation of the loss of chiral methyl stereochemistry observed in this transformation.^{2,3} Furthermore, as the isotopically sensitive branching pathways (steps 2 and 3, Scheme 2), emanate from this intermediate radical, then no $V_{\text{max}}/K_{\text{m}}$ isotope effect at the C-3 hydrogen in (1c) would be expected, as these steps follow step 1, in which the $V_{\text{max}}/K_{\text{m}}$ isotope effect was expressed. Instead the isotope effect of the deuterium at C-3 in (1c) is expressed as a change in the relative flux through the

⁺ This enzymic activity, associated with a protein mol. wt. of 41 000, contains both DAOC and DAC synthetase activities (Scheme 1). We have not been able to separate these two activities: J. E. Baldwin, R. M. Adlington, J. B. Coates, M. J. C. Crabbe, N. P. Crouch, J. W. Keeping, G. C. Knight, C. J. Schofield, H-H. Ting, C. A. Vallejo, M. Thorniley, and E. P. Abraham, *Biochem. J.*, 1987, **245**, 831; see also A. Scheidegger, M. T. Küenzi, and J. Nüesch, *J. Antibiot.*, 1984, **37**, 522.

steps 2 versus 3. Finally the observed incorporation into (4) of the label from dioxygen⁷ follows naturally from Scheme 2. It also follows from the observation of the V_{max}/K_m isotope effect observed from (1b) that the presumably irreversibly formed active oxidising species (as En=Fe=O) is long-lived with respect to the first penicillin *N*-enzyme complex. If the second oxidation, *i.e.* the hydroxylation to (2c), occurs at the same active site then this step could be accommodated in the same mechanistic picture (Scheme 3). Here, the Fe-carbon species cannot obtain radical stabilisation from the ring sulphur, as in the ring-expansion step, and rapidly collapses with retention of stereochemistry to the hydroxylated product.¹¹

We thank Eli Lilly, Indianapolis, U.S.A. and the S.E.R.C. (to N.P.C.) for support.

Received, 1st June 1987; Com. 750

References

- (a) N. Neuss, C. H. Nash, J. E.Baldwin, P. A. Lemke, and J. B. Grutzner, J. Am. Chem. Soc., 1973, 95, 3797; (b) H. Kluender, C. H. Bradley, C. J. Sih, P. Fawcett, and E. P. Abraham, *ibid.*, p. 6149.
- 2 C. A. Townsend, A. B. Theis, A. Scott Neese, E. B. Barrabee, and D. Poland, J. Am. Chem. Soc., 1985, 107, 4760.
- 3 C.-P. Pang, R. L. White, E. P. Abraham, D. H. G. Crout, M. Lutstorf, P. J. Morgan, and A. E. Derome, *Biochem. J.*, 1984, 222, 777.
- 4 J. E. Baldwin, E. P. Abraham, R. M. Adlington, G. A. Bahadur, B. Chakravarti, B. P. Domayne-Hayman, L. D. Field, S. L. Flitsch, G. S. Jayatilake, A. Spakovskis, H-H. Ting, N. J. Turner, R. L. White, and J. J. Usher, J. Chem. Soc., Chem. Commun., 1984, 1225.
- 5 Prepared by methods analogous to those for the corresponding derivative of isopenicillin N: see R. M. Adlington, R. T. Aplin, J. E. Baldwin, B. Chakravarti, L. D. Field, and E-M. M. John, *Tetrahedron*, 1983, **39**, 1061, and references therein.
- 6 H. Simon and D. Palm, Angew. Chem., Int. Ed. Engl., 1966, 5, 920.
- 7 J. E. Baldwin, R. M. Adlington, R. T. Aplin, N. P. Crouch, G. Knight, and C. J. Schofield, preceding paper.
- 8 (a) B. Siegel, *Bioorg. Chem.*, 1979, 8, 219; (b) H. M. Hanauske-Abel and V. Günzler, *J. Theor. Biol.*, 1982, 94, 421.
- 9 The proposal that attack on C-H bonds occurs by oxidative addition of an iron oxo species to generate a homolytically labile iron-carbon bond has been previously used to rationalise certain mechanistic aspects of the enzyme isopenicillin N synthetase: see J. E. Baldwin, R. M. Adlington, S. L. Flitsch, H-H. Ting, and N. J. Turner, J. Chem. Soc., Chem. Commun., 1986, 1305.
- 10 J. E. Baldwin, R. M. Adlington, T. W. Kang, E. Lee, and C. J. Schofield, J. Chem. Soc., Chem. Commun., 1987, 104.
- 11 C. A. Townsend and E. B. Barrabee, J. Chem. Soc., Chem. Commun., 1984, 1586.