Use of the Cyclopropylcarbinyl Test to detect a Radical-like Intermediate in Penicillin Biosynthesis

Jack E. Baldwin,* Robert M. Adlington, Barbara P. Domayne-Hayman, Graham Knight, and Hong-Hoi Ting The Dyson Perrins Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QY, U.K.

Cyclisation of the cyclopropyl-containing substrates (6) and (7) by the enzyme isopenicillin N synthetase (IPNS) gave the bicyclic β -lactams (9) and (10), respectively; these products support the hypothesis that a carbon-centred free radical or equivalent iron-carbon bonded intermediate is involved in the carbon-sulphur bond formation.

Previous results from these laboratories on the mechanism of cyclisation of the precursor (1) to the penicillin (3), catalysed by the enzyme isopenicillin N synthetase (IPNS) have led to the hypothesis that the carbon–sulphur bond formation to give the second ring may involve a free radical^{1,2} (2) or equivalent weak iron–carbon bond.³ As cyclopropylcarbinyl radicals are well known to rearrange to the but-3-enyl system⁴ with a rate constant of $10^8 \text{ s}^{-1} (25 \text{ °C})^5$ (Scheme 1), we decided to apply this probe for radical behaviour in the C–S bond-forming step

in penicillin biosynthesis. Thus two appropriately protected amino acids (4) and (5) were prepared by cyclopropanation [cat. Pd(OAc)₂, CH₂N₂, Et₂O, 0°C] of protected (*R*)-2allylglycine and by the route of Scheme 2, respectively. Coupling⁶ of (4) to produce the fully benzyl-protected tripeptide gave, after deprotection (Na/NH₃) the substrate (6). Additionally, racemic (5) was coupled⁶ to protected L- α -aminoadipoyl-L-cysteine to yield a mixture of diastereoisomeric tripeptides, which were separated (silica gel) and

deprotected (CF₃CO₂H, anisole, reflux 30 min.) to give the required L,L,D-substrate (7).[†] Incubation of (6) with IPNS, under standard conditions, gave as a minor component a penicillin (8) (destroyed by β -lactamase I from Bacillus *cereus*), $\delta_{\rm H}$ (D₂O; 500 MHz) $\ddagger 0.08 - 0.18, 0.27 - 0.36, 0.43 - 0.28$ 0.55, and 0.57-0.66 (4H, 4 × m, CH_2-CH_2CH), 0.67-0.73 $(1H, m, CH_2CH_2CH), 1.7-1.9 (4H, 2 \times m, [CH_2]_2CH_2CO),$ 2.40-2.48 (2H, m, CH₂CO), 3.6-3.7 (1H, m, CH[CH₂]₃), 4.48 (1H, m, CHCO₂H), 5.43 and 5.47 (2H, $2 \times d$, J 3.5 Hz, 5 and 6-H), of unknown C-2 stereochemistry; and a major component shown to be (9) [ratio (9): (8) >3:1], $\delta_{\rm H}$ (D₂O, 500 MHz) \ddagger 1.72—1.97 (4H, 2 × m, [CH₂]₂CO), 2.40 (2H, t, J 7 Hz, CH₂CO), 2.52-2.64 (2H, m, 3-H), 2.76-2.82 and 3.07-3.12 (2H, 2 × m, 2-H), 3.67 (1H, ca. t, J 5 Hz, $CH[CH_2]_3$, 5.36 and 5.49 (2H, 2 × d, J 4.5 Hz, 8 and 9-H), 5.87-5.94 (1H, m, 4-H), and 6.02 (1H, ca. t, J 10 Hz, 5-H) (6-H obscured by HOD); m/z (positive argon fast atom bombardment) $372 (MH^+)$ and $394 (MNa^+)$; v_{max} (CaF₂ cells, D₂O) 1740 cm⁻¹. A Jeener two-dimensional n.m.r. experiment⁷ confirmed the connectivity S-CH₂-CH₂-CH₂-CH=CH-CHand (9) showed no antibacterial activity against Staphylococcus aureus N.C.T.C. 6571 at a concentration of 500 µg ml⁻¹.§

The second cyclopropyl substrate (7) gave only one detectable product (10) when incubated with the enzyme as before. The structure of (10) follows from n.m.r. { δ_H (D₂O; 500 MHz) \ddagger 1.68—1.75 and 1.80—1.90 (4H, 2 × m,

§ Volume for bioassay 100 μl.

Scheme 2. Reagents: i, $(4-MeOC_6H_4)_2CHNH_2$, mol. sieves; ii, Me₃SiCN, then 6 \bowtie HCl, reflux; iii, 2-(t-butoxycarbonyloxyimino)-2-phenylacetonitrile, pH 8; iv, Ph₂CN₂, H⁺; v, C₇H₇SO₃H (1 equiv.), then NaHCO₃.

[CH₂]₂CH₂CO), 2.41 (2H, *ca.* t, *J* 7.5 Hz, CH₂CO), 2.56– 2.62 (1H, m, 3-H), 2.82–2.94 (3H, m, 2- and 3-H), 3.62 (1H, t, *J* 6 Hz, CH[CH₂]₃), 5.20 (1H, *ca.* s, CH₂=), 5.26 (1H, *ca.* s, CH₂=), 5.325 (1H, d, *J* 4.5 Hz, 8-H), and 5.39 (1H, d, *J* 4.5 Hz, 7-H) (5-H obscured by HOD) and mass spectral data, [*m*/*z* (positive argon fast atom bombardment) 372 (*M*H⁺) and 394 (*M*Na⁺)]; v_{max}. (CaF₂ cells, D₂O) 1740 cm⁻¹. A two-dimensional n.m.r. experiment⁷ confirmed the connectivity S–CH₂– CH₂ and indicated an allylic coupling between the olefinic hydrogen, $\delta_{\rm H}$ 5.26, and the high-field component of the three-proton multiplet at $\delta_{\rm H}$ 2.82–2.94. Irradiation at the

⁺ The assignment of configuration as L,L,D is based on successful conversion of (7) with the enzyme IPNS. To date, of more than 100 synthetic variants on the natural substrate (1) which we have tested, no L,L,L-tripeptide was transformed in the enzymic reaction. The other epimer of (7) from the chromatography was inactive.

[‡] Chemical shifts, referenced to internal sodium 3-trimethylsilyl[2,2,3,3-2H₄]propanoate, refer to material purified by h.p.l.c. (reverse phase octadecyl silane column).

frequency of this three-proton multiplet (containing 2α -H) gave a nuclear Overhauser enhancement (5%) at 7-H, $\delta_{\rm H}$ 5.39. No antibacterial activity of (10) was observed against S. aureus N.C.T.C. 6571 (500 µg ml-1).§

The formation in the enzymic reaction of the major bicyclic products (9) and (10) is certainly in accord with the intermediacy, during C-S bond formation, of the cyclopropylcarbinyl radicals (11) and (12), respectively.^{1,2} The alternative formation of a labile Fe-C intermediate, e.g. (13), as previously suggested,³ could also account for these observations via collapse to a radical pair (14), or by direct signatropy to (15) (Scheme 3). Experiments to distinguish these alternatives are in progress.

The absence of cyclobutyl products in these reactions, as might have been expected of a cyclopropylcarbinyl cation [\Rightarrow ion (16)⁹] is consistent with the intermediacy of the radical, as it has been reported that cyclopropylcarbinyl radicals show no evidence for non-classical behaviour.10

Received, 11th May 1987; Com. 625

References

- 1 J. E. Baldwin, E. P. Abraham, R. M. Adlington, J. A. Murphy, N. B. Green, H-H. Ting, and J. J. Usher, J. Chem. Soc., Chem. Commun., 1983, 1319.
- 2 J. E. Baldwin, R. M. Adlington, S. E. Moroney, L. D. Field, and H-H. Ting, J. Chem. Soc., Chem. Commun., 1984, 984.
- 3 J. E. Baldwin, R. M. Adlington, S. L. Flitsch, H-H. Ting, and N. J. Turner, J. Chem. Soc., Chem. Commun., 1986, 1305.
- 4 A. L. J. Beckwith and G. Moad, J. Chem. Soc., Perkin Trans. 2, 1980, 1473.
- 5 B. Maillard, D. Forrest, and K. U. Ingold, J. Am. Chem. Soc., 1976, 98, 7024.
- 6 J. E. Baldwin, S. R. Herchen, B. L. Johnson, M. Jung, J. J.
- Usher, and T. Wan, J. Chem. Soc., Perkin Trans. 1, 1981, 2253.
 7 A. Bax, 'Two-dimensional Nuclear Magnetic Resonance in Liquids,' Reidel, London, 1982.
- 8 W. P. Giering and M. Rosenblum, J. Am. Chem. Soc., 1971, 93, 5299; also P. J. Krusic, P. J. Fagan, and J. San Filippa, Jr., ibid., 1977, 99, 250.
- 9 J. S. Storal, I. Yavari, J. D. Roberts, G. K. Surya Prakash, D. J. Donovan, and G. A. Olah, J. Am. Chem. Soc., 1978, 100, 8016.
- 10 J. K. Kochi, P. J. Krusic, and D. R. Eaton, J. Am. Chem. Soc., 1969, 91, 1877.

¶ In this connection it is interesting that $(\eta^5$ -cyclopentadienyl) $(\eta^1$ cyclopropylmethyl) dicarbonyl iron has been prepared and shown not to rearrange to the homoallyl derivative at 0°C.8