Bis-organoimido Complexes of Tungsten(vi). The Crystal and Molecular Structure of Bipyridyldichlorobis(phenylimido)tungsten(vi), [WCl₂(NPh)₂(bipy)]

Barry R. Ashcroft,^a Donald C. Bradley,*b George R. Clark,^a R. John Errington,^b Alastair J. Nielson,*a and Clifton E. F. Rickard^a

Department of Chemistry, University of Auckland, Private Bag, Auckland, New Zealand

Bis-organoimido complexes of tungsten(v₁) are prepared by reaction of WCl₆ with Me₃SiNHCMe₃, or by reaction of mono-organoimido complexes with the silylamines Me₃SiNHR; the structure of [WCl₂(NPh)₂(bipy)] (bipy = α , α -bipyridyl) has been established by X-ray crystallography.

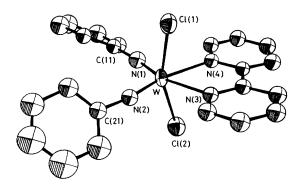
Preparative routes leading to bis-organoimido complexes, $[M(NR)_2]$, are less well developed than those for monoorganoimido complexes. We have previously shown that for MCl_5 molecules, (M = Nb, Ta), substitution of two chlorides by alkylamido ligands, NHR, results in formation of an alkylimido ligand and co-ordinated primary amine [equation (1)] by an interligand proton-transfer process which is independent of steric size. A third alkylamido ligand could be substituted [equation (2)] but the complex could not be induced to eliminate HCl to form a second imido function. We have now extended these reactions to establish whether two alkylimido ligands can be generated from an MCl₆ molecule and, if so, whether steric size is important.

$$MCl_5 + 2Me_3SiNHR \rightarrow [MCl_3(NR)(NH_2R)] + 2Me_3SiCl (1)$$

$$[MCl3(NR)(NH2R)] + 2RNH2 \rightarrow [MCl2(NR)(NHR)(NH2R)] + RNH3Cl (2)$$

Reaction of WCl₆ with two equivalents of Me₃SiNHCMe₃ benzene gives a yellow product analysing as [WCl₄(NHCMe₃)₂] (1) but ¹³C n.m.r. spectroscopy shows it to be a mixture of (1) and $[WCl_4(NCMe_3)(NH_2CMe_3)]$ (2). Reaction of the mixture with a further two equivalents of Me₃SiNHCMe₃, or reaction of WCl₆ with 4 or more equivalents of Me₃SiNHCMe₃ gives [WCl₂(NCMe₃)₂(NH₂CMe₃)]_x (3) indicated by analytical and ¹³C n.m.r. spectral data. A single absorption at 210 cm⁻¹ in the i.r. spectrum indicates trans chloro ligands. Complex (3) reacts with y-picoline (pic) or α, α -bipyridyl (bipy) to form [WCl₂(NCMe₃)₂(pic)₂] (4) and [WCl₂(NCMe₃)₂(bipy)] (5) for which i.r. data indicate trans chlorine atoms, while reaction of (3) with PMe₃ gives $[WCl_2(NCMe_3)_2(PMe_3)]_x$ (6), for which absorptions at 218 and 180 cm⁻¹ indicate cis chlorine atoms. Complex (3) reacts with 4 equivalents of t-butylamine in light petroleum (b.p. 40-60°C) to give the known complex $[W(NCMe_3)_2(NHCMe_3)_2]$ (7),³ which we have as yet been unable to convert into a tris-imido complex.

$$[WCl_4(NHCMe_3)_2] \qquad [WCl_2(NR)_2(bipy)]$$
 (1) (5) $NR = NCMe_3$ (9) $NR = NPh$
$$[WCl_4(NCMe_3)(NH_2CMe_3)] \qquad [WCl_2(NCMe_3)_2(PMe_3)]_x$$
 (6)
$$[WCl_2(NCMe_3)_2(NH_2CMe_3)]_x \qquad [W(NCMe_3)_2(NHCMe_3)_2]$$
 (3) (7)
$$[WCl_2(NCMe_3)_2(pic)_2] \qquad [WCl_2(NCMe_3)(NPh)(PMe_3)_2]$$
 (4) (8)


The silvlamines Me_3SiNHR (R = CHMe₂, Et) do not react cleanly with WCl₆ or the mixture of (1) and (2). However, the mono-organimido tungsten(vi) complexes $[WCl_4(NR)]_2$ (R = Ph, CHMe₂, Me), prepared from $[WCl_4(O)]_2$ and aryl or alkyl isocyanates, 4 react with the silylamines Me₃SiNHR' (R' = Ph, PhMe, CMe₃, CHMe₂, CH₂Me) in benzene to give the bis-organoimido complexes [WCl₂(NR)(NR')(NH₂R')]₂, for which i.r. absorptions in the vicinity of 310 and 270 cm⁻¹ indicate cis-metal dichloride ligands. Bridging and terminal phenylimido ligands are characterised in the ¹³C n.m.r. spectra by ipso carbon resonances at δ 162 and 151 respectively but the α -carbon resonance position does not distinguish these for the bis alkylimido dimers. However the least sterically hindering organoimido ligand is expected to form the bridge. An X-ray crystal structure determination of $[WCl_2(NCMe_3)(\mu-NPh)(NH_2CMe_3)]_2^5$ has shown bridging NPh and terminal NCMe₃ ligands.

The dimers do not react further with primary amines to give complexes similar to (7), but they may be used to form $[WCl_2(NR)(NR')L_2]$ complexes which cannot be prepared via the reaction of the dioxo species [WCl₂(O)₂L₂] with aryl or alkyl isocyanates. Thus reaction of [WCl₂(NCMe₃)(µ-NPh)- $(NH_2CMe_3)_2$ with PMe₃ gives $[WCl_2(NCMe_3)(NPh)(PMe_3)_2]$ (8) which contains trans orientated phosphines as indicated by a single, virtually coupled triplet for the PMe₃ ligands in both the ¹³C{¹H} and ¹H n.m.r. spectra and by a singlet (9.6 p.p.m., external H₃PO₄) in the ³¹P{¹H} spectrum. Reaction gives the complexes dimers with bipy $[WCl_2(NR)(NR')(bipy)]$ for which a single band in the far i.r. spectrum indicates the metal dichlorides are now orientated trans. This isomerisation is confirmed by an X-ray crystal structure determination of [WCl₂(NPh)₂(bipy)] (9).†

The asymmetric unit contains two crystallographically distinct, but structurally similar, molecules. The structure of one of these molecules is depicted in Figure 1 which shows a distorted octahedral geometry about tungsten, with two cis-orientated phenylimido groups, trans chloro ligands, and the nitrogen atoms of the bipyridyl ring co-ordinated trans to the imido functions. The four separate determinations of the imido W-N bond lengths and W-N-C bond angles are not

Department of Chemistry, Queen Mary College, Mile End Road, London E1 4NS, U.K.

[†] Crystal data for (7): $C_{22}H_{18}Cl_2N_4W$, M=593.15, triclinic, space group $P\overline{1}$, a=14.616(6), b=17.778(6), c=8.532(2) Å, $\alpha=94.71(2)$, $\beta=100.41(3)$, $\gamma=84.31(3)^\circ$, U=2165.1 ų, F(000)=1144, $D_c=1.819$ g cm⁻³, Z=4, $\mu(\text{Mo-}K_{\alpha})=64.2$ cm⁻¹. Intensity data were recorded on a Nonius CAD4 diffractometer with Mo- K_{α} radiation and corrected for Lorentz, polarisation, and absorption effects. The structure was solved from Patterson and heavy-atom electron density syntheses and refined by full-matrix least-squares, omitting hydrogens, with tungsten and chlorine atoms anisotropic, to an R value of 0.048 for 3357 independent reflections for which $I>3\sigma(I)$. Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

Figure 1. Molecular structure of [WCl₂(NPh)₂(bipy)] (9). Important averaged bond lengths (Å) and bond angles (°): W-Cl(1) 2.390(4), W-Cl(2), 2.385(4), W-N(1) 1.782(8), W-N(2) 1.775(9), W-N(3) 2.319(8), W-N(4) 2.315(8); W-N(1)-C(11) 165.3(8), W-N(2)-C(21) 166.3(8), N(1)-W-N(2) 104.3(4), Cl(1)-W-Cl(2) 159.3(1).

significantly different [mean values 1.789(6) Å and 165.9(6)° respectively]. Electronically this represents delocalisation of 6 donor electrons over the two phenylimido ligands and thus an 18 electron count for the complex is maintained.

Bis-organoimido complexes of tungsten(vI) may thus be prepared by reactions involving proton transfer from one primary alkylamido group to another. The process is indepen-

dent of steric size, which contrasts with reactions of high-valent early transition metals where, with less acidic α -hydrogens, metal-alkyl ligands require steric bulk before forming an alkylidene ligand. The new complexes are organoimido analogues of the well-known *cis*-dioxo tung-sten(v1) complexes, and the reaction sequences described herein allow their formation for a variety of alkyl and aryl groups.

Received, 16th June 1986; Com. 816

References

- 1 W. A. Nugent and B. L. Haymore, *Coord. Chem. Rev.*, 1980, 31, 123
- 2 T. C. Jones, A. J. Nielson, and C. E. F. Rickard, J. Chem. Soc., Chem. Commun., 1984, 205; P. A. Bates, A. J. Nielson, and J. M. Waters, Polyhedron, 1985, 4, 1391.
- 3 W. A. Nugent and R. L. Harlow, Inorg. Chem., 1980, 19, 777.
- 4 D. C. Bradley, M. B. Hursthouse, K. M. A. Malik, A. J. Nielson, and R. L. Short, J. Chem. Soc., Dalton Trans., 1983, 2651.
- 5 D. C. Bradley, R. J. Errington, M. B. Hursthouse, A. J. Nielson, and R. L. Short, *Polyhedron*, 1983, 2, 843.
- 6 R. R. Schrock and J. P. Fellman, J. Am. Chem. Soc., 1978, 100, 3359; J. D. Fellman, G. A. Rupprecht, C. D. Wood, and R. R. Schrock, ibid., 1978, 100, 5964; D. N. Clark and R. R. Schrock, ibid., 1978, 100, 6774.