17

Enhanced Formation of Ethylene and Alcohols at Ambient Temperature and Pressure in Electrochemical Reduction of Carbon Dioxide at a Copper Electrode

Yoshio Hori,* Akira Murata, Ryutaro Takahashi, and Shin Suzuki

Department of Synthetic Chemistry, Faculty of Engineering, Chiba University, Yayoi-cho, Chiba 260, Japan

In the electroreduction of CO_2 at a copper cathode in aqueous solution at ambient temperature and pressure the faradaic yield of C_2H_4 amounted to 48%, and appreciable amounts of EtOH and PrⁿOH were formed; the selectivity of the products depends strongly upon the electrolytes.

Electroreduction of CO_2 in KHCO₃ aqueous electrolytes yields CH_4 and C_2H_4 at Cu electrodes, as reported previously.¹ We also observed the formation of CH_4 , C_2H_4 , and alcohols in the electroreduction of CO at Cu electrodes in aqueous solution.² We now describe a significantly enhanced formation of ethylene along with production of alcohols in the electroreduction of CO_2 in various aqueous media at ambient temperature and pressure. The selectivity of the products depends strongly upon the electrolytes.

A copper electrode (99.999%, 20×20 mm) with a copper

Electrolyte	Conc./ mol l ⁻¹	pHª	<i>E</i> /V <i>vs</i> . N.H.E.	Faradaic efficiency/%							
				CH ₄	C ₂ H ₄	EtOH	Pr ⁿ OH	CO	HCO ₂ -	H ₂	Total
KCI	0.1	5.9	-1.44	11.5	47.8	21.9	3.6	2.5	6.6	5.9	99.8
	0.5		-1.39	14.5	38.2	ь	ь	3.0	17.9	12.5	
	1.5	5.7	-1.36	9.6	40.6	ь	ь	1.6	31.6	16.3	
KClO₄	0.1	5.9	-1.40	10.2	48.1	15.5	4.2	2.4	8.9	6.7	96.0
K ₂ SO₄	0.1	5.8	-1.40	12.3	46.0	18.2	4.0	2.1	8.1	8.7	99.4
K ₂ HPO ₄	0.1	6.5	-1.23	17.0	1.8	0.7	tr	1.3	5.3	72.4	98.5
	0.5	7.0	-1.17	6.6	1.0	0.6	0.0	1.0	4.2	83.3	96.7

Table 1. Faradaic efficiencies of products from the electroreduction of CO₂ at a Cu electrode at 5 mA cm⁻² in various solutions at 19 °C.

^a pH values were measured for bulk solutions after electrolyses. ^b Not analysed.

Figure 1. Voltammograms obtained with N₂ and CO₂ saturated solutions. (A): N₂ saturated phosphate buffer solution (0.10 M KH₂PO₄ + 0.10 M K₂HPO₄, pH 6.7). (B): CO₂ saturated phosphate buffer solution (initial composition: 0.05 M KH₂PO₄ + 0.15 M K₂HPO₄, pH 6.7 after equilibration with saturated CO₂). (C): 0.1 M KHCO₃ saturated with CO₂ (pH 6.8).

connecting strip attached was electrolytically polished in phosphoric acid at ambient temperature, and then rinsed with doubly distilled deionized water. The electrolytes were purified by pre-electrolysis with a Pt black cathode under purified N_2 for 20 h. The measurements were conducted in a three compartment cell in which two anode compartments faced each side of the Cu electrode.

Coulometric measurements were conducted with purified CO_2 bubbled into the catholyte (*ca.* 140 ml min⁻¹). The electrolyte (60 ml) was vigorously stirred by a magnetic stirrer during electrolysis. Gaseous products in the effluent gas from the cell and EtOH and PrⁿOH in solution were analysed by gas chromatography, at least three columns being used for identification of each product. The formation of CH₄ and C₂H₄ was confirmed by gas chromatography–mass spectrometry. The electrolytes were analysed by an ion chromatograph. Other details were as previously reported.¹

Figure 1 shows voltammograms obtained for solutions saturated with N₂ and CO₂. The electrolytes for curves A (saturated with N₂) and B (CO₂) were phosphate buffer solutions of pH 6.7 for each. The cathodic current A starts at -0.79 V vs. normal hydrogen electrode (N.H.E.) and increases sharply. The onset of B is close to that of A. The

current B has a peak at -1.01 V. Curve C, obtained in 0.1 M KHCO₃ saturated with CO₂ (pH 6.8), has a shoulder at -1.02 V.

Coulometric measurements were conducted with constant current density (5 mA cm⁻²). The gaseous products, CH₄, C_2H_4 , and H_2 , appeared in the effluent gas after the electrolysis started. Their concentrations remained virtually constant during the electrolysis, e.g. in a typical experiment in 0.1 м КНСО3: CH₄ 202 p.p.m., C₂H₄ 139 p.p.m., and H₂ 386 p.p.m. The concentration of CH₄ in blank samples without electrolysis was <0.5 p.p.m. The products in the electrolytes were EtOH, PrⁿOH, and HCO₂⁻. C₂H₆ and MeOH were not produced. Figure 2 presents the faradaic yields of products at 19°C in KHCO₃ solutions of various concentrations. The electrode potential ranged from -1.28 V vs. N.H.E. in 1.5 M КНСО₃ to -1.42 V in 0.03 м КНСО₃. The faradaic yields were calculated on the basis of the number of electrons required for the formation of one molecule of the products from CO₂ and H₂O: 8 for CH₄, 12 for C₂H₄, 12 for EtOH, 18 for Pr^nOH , 2 for CO, 2 for HCO_2^- , and 2 for H_2 . The sum of the faradaic yields exceeded 90%. Hence the substances mentioned here are the major products of the reaction. The faradaic yields of C_2H_4 and EtOH are high in dilute electrolyte solutions. CH₄ formation increases with increase of the electrolyte concentration, reaching a maximum, and then decreases. The faradaic yields of HCO₂⁻ and CO, not shown in Figure 2, do not depend strongly on the electrolyte concentration, ca. 10 and 2% respectively. H₂ formation increases with the electrolyte concentration.

Table 1 presents the faradaic yields of some products at 19 °C in various electrolyte solutions. The faradaic yields of C_2H_4 and EtOH are high in KCl, KClO₄, and K₂SO₄ solutions; the trends of the yields in these solutions are close to those in dilute (0.03 M) KHCO₃. The sum of the faradaic yields of CH₄ and C₂H₄ are low in K₂HPO₄ solutions, H₂ formation being prevalent.

The faradaic yield of CO₂ reduction amounts to 90% or more for a total current density of 5 mA cm⁻² (Figure 2 and Table 1). It is remarkable that hydrocarbons and alcohols are produced in high yields from CO₂ reduction under ambient conditions, although the overvoltages are high [E° (CO₂/CH₄) -0.19 V vs. N.H.E., E° (CO₂/C₂H₄) -0.28 V, at pH 6.0 and 25 °C].³

Curve B in Figure 1 starts to increase at a potential nearly equal to that for A, passes through a peak (at -1.01 V vs. N.H.E.), decreases, and then increases again. A coulometric measurement at a controlled potential of -1.01 V with the phosphate electrolyte for B with CO₂ bubbled showed faradaic yields of 88.7% for H₂, 3.0% for CO, and 1.3% for HCO₂⁻; <0.03% for CH₄ and C₂H₄.

We previously reported that the presence of CO markedly inhibits the cathodic hydrogen discharge at a Cu electrode.²

Figure 2. Faradaic yields of the products in the electrochemical reduction of CO_2 at 19 °C in KHCO₃ aqueous solutions of various concentrations. Current density 5 mA cm⁻². Δ , C_2H_4 ; O, CH₄; \Box , H₂; \blacktriangledown , PrⁿOH; \blacklozenge , EtOH.

Anodic oxidation of MeOH, as is well known, is greatly inhibited by some intermediate species formed in the reaction, *e.g.* CO or another related species adsorbed on the electrode.⁴ CO, produced in the reduction of CO_2 at -1.0 V in the present system (curve B), may be adsorbed on the electrode. These adsorbed species would interfere with the cathodic hydrogen discharge. The cathodic current B is thus greatly suppressed at potentials more negative than -1.0 V. The peak height at -1.0 V of curve C is markedly lowered, probably because of slow proton donation in the hydrolysis of CO₂ (CO₂ + H₂O \rightarrow H⁺ + HCO₃⁻).⁵

Hydrocarbons and alcohols will be produced in the reduction of adsorbed intermediate species related to CO at potentials more negative than -1.0 V vs. N.H.E. According to our studies of the electroreduction of CO at Cu electrodes, formation of C₂H₄, EtOH, and PrⁿOH is favoured in solutions of high pH.² They are preferably produced in the electroreduction of CO₂ in KCl, KClO₄, K₂SO₄, and dilute KHCO₃ solutions (Table 1). These facts may be explained in terms of a non-equilibrium local region of high pH close to the electrode.

OH- ions are released at the electrode when hydrocarbons and hydrogen are produced: e.g. $CO_2 + 6H_2O + 8e^- \rightarrow CH_4$ + 80H⁻. OH⁻ is instantaneously neutralized by $HCO_3^{-.5}$ However, OH- release will be much faster than the supply of HCO₃⁻ to the electrode in dilute KHCO₃, KCl, KClO₄, and K₂SO₄. The rates of the reaction of CO₂ and OH⁻ are very low owing to slow hydration of CO2.5 CO2 will thus remain un-neutralized. The pH will consequently rise in the neighbourhood of the electrode in non-equilibrium situations. Hydrogen discharge is prevented under high pH conditions, and the electroreduction of CO₂ will be favoured. In concentrated KHCO₃ or phosphate solutions, H₂ formation will advantageously proceed since sufficient HCO3⁻ or $H_2PO_4^-$ is present to neutralize OH⁻ and the pH value is not enhanced at the electrode. Hence, the faradaic yields of CO2 reduction will be lowered in concentrated KHCO₃ solutions.

Received, 10th March 1987; Com. 298

References

- Y. Hori, K. Kikuchi, and S. Suzuki, *Chem. Lett.*, 1985, 1695; Y. Hori, K. Kikuchi, A. Murata, and S. Suzuki, *ibid.*, 1986, 897; Y. Hori, A. Murata, K. Kikuchi, and S. Suzuki, *J. Chem. Soc.*, *Chem. Commun.*, 1987, 728.
- 2 Y. Hori, A. Murata, R. Takahashi, and S. Suzuki, J. Am. Chem. Soc., 1987, 109, 5022.
- 3 Estimated from thermodynamic data: 'Lange's Handbook of Chemistry,' ed. J. A. Dean, 12th edn., McGraw-Hill, New York, 1979.
- 4 K. Shimazu and H. Kita, *Denki Kagaku*, 1985, 53, 652; B. Beden,
 C. Lamy, A. Bewick, and K. Kunimatsu, *J. Electroanal. Chem.*,
 1981, 121, 343; K. Kunimatsu, *ibid.*, 1982, 140, 205.
- 5 F. A. Cotton and G. Wilkinson, 'Advanced Inorganic Chemistry,' Interscience, 3rd edn., 1972, p. 296.