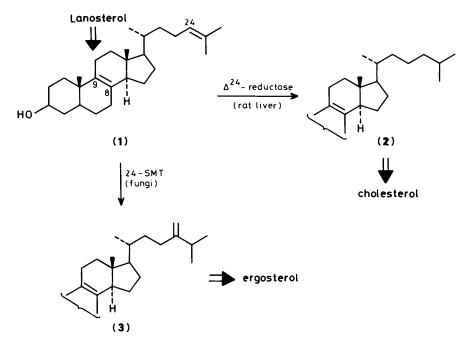
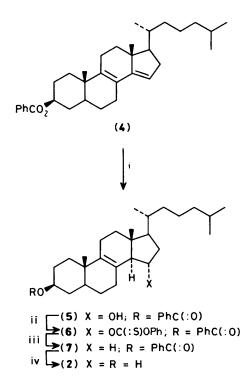
19

Synthesis of Zymosterol: Salient Intermediate of Fungal and Mammalian Sterol Biosynthesis

Roland E. Dolle,^{a*} Stanley J. Schmidt,^b and Lawrence I. Kruse^a


^a Department of Medicinal Chemistry, Smith Kline & French Research Limited, The Frythe, Welwyn, Hertfordshire AL6 9AR, U.K.

^b Department of Medicinal Chemistry, Research and Development Division, Smith Kline & French, Philadelphia, Pa., 19101, U.S.A.


A useful strategy for the construction of sterol biosynthetic intermediates possessing Δ^{8} -unsaturation is described and exemplified by the synthesis of zymosterol (1) and 24,25-dihydrozymosterol (2).

Zymosterol (1) has been recognised as the common biosynthetic intermediate in both animal tissues and a variety of fungi and yeasts.¹ Sterol (1) is transformed to cholest-8-en-3 β ol (2) *en route* to cholesterol by Δ^{24} -sterol reductase in mammalian systems.^{1b} In fungi and yeasts, (1) is initially metabolised to fecosterol (3) *via* S-adenosylmethionine sterolC-24-methyltransferase (24-SMT);[†] further enzymatic transformation produces ergosterol^{1c} (Scheme 1). Although iso-

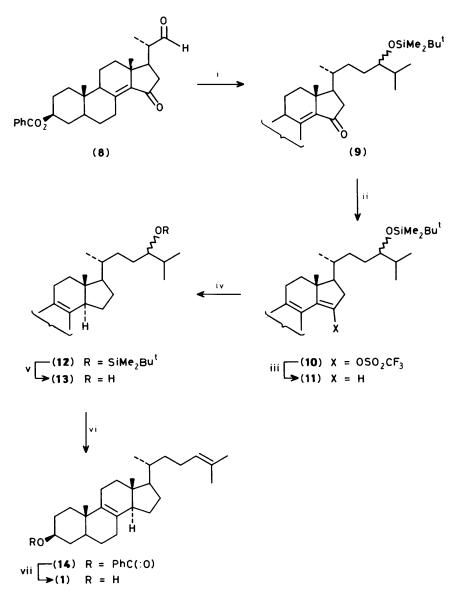
[†] The mechanism of this biotransformation may be viewed as a formal nucleophilic attack of the Δ^{24} -alkene on the methyl group of *S*-adenosylmethionine (SAM).^{1a}

Scheme 1

Scheme 2. Reagents and conditions: i, B_2H_6 , THF, then ⁻OOH (70%); ii, PhOC(S)Cl, pyridine (95%); iii, Bu₃SnH, AIBN, toluene, 80 °C (90%); iv, NaOMe, MeOH (95%).

lated some 50 years ago,² the synthesis of (1) has not been reported.[‡] The key to any approach to the construction of (1) is the regio-controlled introduction of C8(9)-unsaturation in

the sterol nucleus. Our strategy for Δ^{8} -incorporation is based on the regioselective hydroboration of the sterol 8,14-diene system³ followed by Barton-type deoxygenation.⁴ This approach, which should find general application for the preparation of other Δ^{8} -sterol biosynthetic intermediates, is exemplified by the synthesis of (1) and (2).


Thus, hydroboration [1.5 equiv. B_2H_6 , tetrahydrofuran (THF), 25 °C; then \neg OOH] of the 14,15-double bond in (4)⁵ afforded 15 α -alcohol (5)§·¶ (70%, Scheme 2). Thiocarbonate formation [1.5 equiv. PhOC(S)Cl, pyridine] yielded (6); deoxygenation [1.3 equiv. Bu₃SnH, azoisobutyronitrile (AIBN), toluene, 80 °C] generated (7) which, upon saponification [NaOMe, MeOH/toluene, 25 °C; 85% from (5)] furnished crystalline (MeOH) 24,25-dihydrozymosterol (2) (m.p. 126–127 °C; lit.^{6a} 127–128 °C).

126-127 °C; lit.^{6a} 127-128 °C). Enone-aldehyde (8)⁷, a readily available precursor for (1), was elaborated to enone (9) (Scheme 3) by sequential aldol condensation/dehydration [4 equiv. methyl isopropyl ketone, 4 equiv. lithium di-isopropylamide (LDA), THF, -78°C; then p-MeC₆H₄SO₃H, toluene/CHCl₃ 3:1, 60 °C], selective hydrogenation (1 atm H₂, Lindlar catalyst) of the 22,23double bond, chemoselective reduction of the saturated 24-ketone (1.2 equiv. t-butylamine-borane complex, CH₂Cl₂, reflux),⁸ and finally silvlation [1.1 equiv. Bu^tMe₂SiOSO₂CF₃, 1.3 equiv. 2,6-lutidine, CH₂Cl₂, 0°C; 85% yield from (8)]. Transformation of (9) into (11) required the intermediacy of the dienol trifluoromethanesulphonate (10)^{9a} [1.2 equiv. $(CF_3SO_2)_2O$, 1.5 equiv. 2,6-di-t-butyl-4-methylpyridine, CH_2Cl_2 25 °C, reflux] and reduction^{9b.c} [0.05 equiv. $Pd(OAc)_2(Ph_3P)_2$, 8 equiv. Bu_3N , 4 equiv. HCO_2H , dimethylformamide (DMF), 70 °C]. Application of the hydroborationdeoxygenation sequence (above) to (11) provided alkene (12). Desilylation (1.4 equiv. Bu₄NF, THF, 25 °C) gave the alcohol

[§] All new compounds, as well as (1) and (2), exhibited satisfactory analytical and spectroscopic data.

[‡] Zymosterol has been isolated from bakers' yeast in 0.025% yield.11

 $[\]P$ 5—10% yield of the corresponding diol was also isolated.

Scheme 3. Reagents and conditions: i, (a) methyl isopropyl ketone, LDA, -78 °C, (b) *p*-MeC₆H₄SO₃H, CHCl₃/toluene, 70 °C, (c) H₂/ Lindlar catalyst, (d) Bu'NH₂·BH₃, CH₂Cl₂, reflux, (e) Bu'MeSiOSO₂CF₃, 2,6-lutidine, CH₂Cl₂ (85% overall); ii, (CF₃SO₂)₂O, 2,6-di-t-butyl-4-methylpyridine, CH₂Cl₂ (98%); iii, Pd(OAc)₂(Ph₃P)₂ cat., Bu₃N, HCO₂H, DMF (95%); iv, see Scheme 2 i—iii (70%); v, Bu₄NF, THF (100%); vi, [C₆H₅C(CF₃)₂O]S(C₆H₅)₂, CH₂Cl₂ (90%); vii, NaOMe, MeOH (95%).

(13) quantitatively, which was dehydrated [1.1 equiv. Martin sulfurane (Aldrich), CH_2Cl_2 , 0 °C, 1 min] to give (14).**

Saponification of the benzoate and recrystallisation (methanol) gave (1) (m.p. 110–112 °C, lit.¹¹ 110.5–112 °C).

Received, 31st July 1987; Com. 1116

References

- (a) P. Benveniste, Annu. Rev. Plant Physiol., 1986, 37, 275; (b)
 G. J. Schroeffer, Jr., Annu. Rev. Biochem., 1982, 51, 555; (c) E. I.
 Mercer, Pestic. Sci., 1984, 15, 133; (d) L. W. Parks, Crit. Rev. Microbiol., 1978, 301.
- 2 S. Maclean, Biochem. J., 1928, 22, 22.

- 3 E. J. Parish and G. J. Schroepfer, Jr., *Chem. Phys. Lipids*, 1979, **25**, 381.
- 4 M. J. Robins and J. S. Wilson, J. Am. Chem. Soc., 1982, 103, 932.
- 5 (a) R. E. Dolle, S. J. Schmidt, and L. I. Kruse, J. Org. Chem., 1988, in the press; (b) L. F. Fieser and G. Ourisson, J. Am. Chem. Soc., 1953, 75, 4404.
- 6 (a) M. Anastasia, A. Fiecchi, and G. Galli, J. Org. Chem., 1981,
 46, 3421; (b) D. H. R. Barton and J. D. J. Cox, J. Chem. Soc.,
 1949, 214; (c) M. Tsuda and G. J. Schroepfer, Jr., J. Org. Chem.,
 1979, 44, 1290.
- 7 R. E. Dolle and L. I. Kruse, J. Org. Chem., 1987, 51, 4047.
- 8 T. C. Crawford and G. C. Andrews, *Tetrahedron Lett.*, 1980, 693, 697.
- 9 (a) P. J. Stang and W. Treptow, Synthesis, 1980, 283; (b) S. Cacchi, E. Morera, and G. Ortar, Tetrahedron Lett., 1984, 4821;
 (c) R. E. Dolle and L. I. Kruse, manuscript in preparation.
- 10 Y. H. Sato and Y. Sonoda, Chem. Pharm. Bull. Jpn., 1981, 29, 2604.
- 11 U. F. Taylor, A. Kisic, R. A. Pascal, Jr., A. Izumi, M. Tsuda, and G. J. Schroepfer, Jr., J. Lipid Res., 1981, 22, 171.

^{** 5%} of the Δ^{23} -isomer was detected. Dehydration of a C-24 alcohol to yield the Δ^{24} -alkene has been previously accomplished using PCl₃/pyridine in low yield.¹⁰