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A New Synthetic Route to §-Bromoprop-2-ynyl Mixed Acetals and Bromovinyl Bis-allyl
Mixed Acetals, Precursors of a-Methylene-y-Butyrolactones

J. P. Dulcere,* M. N. Mihoubi, and J. Rodriguez

U.A. au CNRS n° 109, Centre de St-Jéréme, D 12, Ave Esc. Normandie-Niemen, 13397 Marseille Cedex 13, France

Cohalogenation by N-bromosuccinimide in methanol of B-bromoailenyl ethers (3a—g) or allyl allenyl ethers (8d—f)
affords unsaturated halogeno-compounds (5a—g) or (3d—f} which are converted via homolytic carbocyclization into

a-methylene-y-butyrolactones (7a—g).

There has been considerable work on the synthesis of
a-methylene-y-buytrolactones owing to the biological and
tumour-inhibiting activities of a number of naturally occurring
terpenoids containing this structural unit.! More specifically,
methylene-tetrahydrofurans have recently received much
attention owing to their preformed methylene moiety.2 They
can readily be synthesized by radical cyclization of 3-bromo-
prop-2-ynyl ethers, then oxidized into a-methylene-y-butyro-
lactones, but the low yield of the last step limits the usefulness
of this synthetic approach.?

In order to enlarge the scope of this procedure, a
characteristic of which is the regio- and stereo-selectivity of
the intramolecular free-radical cyclization step,* we have

extended the reaction to -bromoprop-2-ynyl mixed acetals
(5a—g) and bromovinyl bis-allyl mixed acetals (9d—f).
Halogenation of the alkenes (1) by N-bromosuccinimide
(NBS) in prop-2-ynyl alcohol afforded the f3-bromopropynyl
ethers (2) in almost quantitative yields (Scheme 1), the
reaction being regio- and stereo-selective for compounds
(2a,b,g). The propynyl acetals (5) could easily be prepared
from the ethers (2) in three steps: the allenyl ethers (3) were
formed by the reaction of (2) with a catalytic amount of
ButOK in benzene or pentane (4—6 h);® bromination—dehy-
drobromination led to the acetals (5) via the dibromides (4).
For the cyclic derivatives (2d—f), on the other hand,
treatment with 1.2 equivalents of ButOK in refluxing benzene
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The bicyclic compounds (7d—g) are cis-ring fused.

Scheme 1. Reagents and conditions: i, HC=C-CH,0OH, NBS (0°C; 1
h); ii, ButOK (catalytic quantity), pentane or C¢Hs, 4—6 h; iii, add
NBS (1.0 equiv.) in Me,CO to (3) or (8) in MeOH, —40°C, 0.5 h; iv,
ButOK (1.1 equiv.), pentane, room temp.; v, (5) or (9), 10 mmol,
0.35 M in C¢Hg, BusSnH (1.25 equiv.), azoisobutyronitrile (AIBN)
catalyst, C¢Hg, 2 h, reflux.
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Scheme 2. Reagents and conditions: i, HCzCCH,OH, NBS; ii,
CISiMe;, HOCH,CH,OH; iii, (a), ButOK (cat. amount), pentane,
room temp.; (b), NBS, MeOH; (c), BusSnH, AIBN, C,H,; (d), Jones
reagent.
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Scheme 3. Reagents and conditions: i, HC=CCH,OH, NBS; ii, ButOK
(cat. amount), pentane, room temp.; iii, Bu3;SnH, AIBN, C¢Hg; iv,
m-CICcH,CO;H, BF;-Et,0.
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for 3 h afforded the allyl allenyl ethers (8d—f), treatment of
which in acetone with NBS at —40°C gave the mixed acetals
(9d—f). Intramolecular free-radical cyclization of either the
propynyl acetals (Sa—g) or the bromovinyl acetals (9d—f) by
heating the Bu;SnH in refluxing benzene in the presence of
azoisobutyronitrile (AIBN) gave the 2-methoxy-3-methylene-
tetrahydrofurans (6) (65—72%). Jones oxidation of (6) gave
the a-methylene-y-lactones (7) in 92—96% yields.

It is noteworthy that the o-methylene-y-lactones (7d—f)
can be obtained in only five steps via (8) from starting cyclic
alkenes in at least 50% overall yield.

The presence of an additional oxygen function in the
homoallylic position is assumed to enhance tumour-inhibiting
activities of a-methylene-y-lactones.ld.c Thus mesityl oxide
(10) was a suitable starting material for preparing the
oxygenated «-methylene-y-butyrolactone (13) (Scheme 2).
Favorskii-type rearrangements could be avoided by convert-
ing (11) into the ethylene acetal” (12). The protected carbonyl
group prevents the isomerization of (13) to give (14).2:8

Starting from A3-carene (15), the acid sensitive o-methyl-

ene-y-lactone (19) ([«]2%, 68.5°, ¢ 7.3, methanol) could be
prepared similarly using mild oxidation conditions.® The
regio- and stereo-selectivity of the cohalogenation to give (16)
and the free-radical cyclization lead to diastereospecificity in

the product (19)!0 (Scheme 3).1
Compounds of type (9) have previously been prepared by a

more elaborate synthetic route involving addition of butoxy-
allene to an excess of allylic alcohol.!0 Our procedure which

t (19): N.m.r. (CDCls, 200 MHz): 'H: & 0.43—0.97 (m, 2H), 1.07 (s,
6H), 1.43 (s, 3H), 2.43—3.13 (m, SH), 5.5 (d, 7 2.5 Hz, 1H), and 6.08
(d,7 2.5 Hz, 1H); 13C: & 169.9, 140.3, 122.5, 84.5, 44.7, 30.6, 28.9,
28.2,26.5,20.6, 19.8, 19.2, and 14.7.
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requires only readily available starting materials such as the
alkenes (la—g) and (15) or the «,B-unsaturated carbonyl
compound (10) and prop-2-ynyl alcohol, appears to be as
efficient as others which have already been reported.!a. 11
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