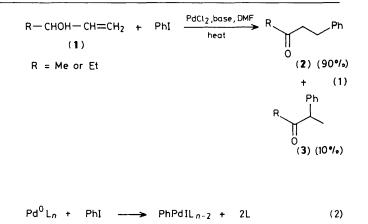
## Palladium Catalysed Phenylation of Allylic Alcohols; Dramatic Effect of Tertiary Amines on the Reaction Rate

## Rachida Benhaddou, Stanislas Czernecki,\* and Guy Ville


Laboratoire de Chimie des Glucides, Université P. et M. Curie, Tour 54-55, E1, 4 Place Jussieu, 75005 Paris, France

The rate of palladium catalysed phenylation of allylic alcohols is markedly enhanced by addition of tertiary amines, presumably by co-ordination to the palladium atom to form very reactive species.

As part of a continuing programme<sup>1</sup> dealing with the study of the Heck reaction,<sup>2</sup> the kinetics of the title reaction (equation 1) have been investigated. For this reaction, a multi-step mechanism involving *cis*-addition of 'ArPdX' followed by *syn*-elimination of 'HPdX' is now well established.<sup>1</sup> A base is generally added to the reaction system to regenerate Pd<sup>0</sup> from 'HPdX' by neutralisation of HX.<sup>3.4</sup>

Since the determination of the rate law of such a complex reaction is usually difficult, the initial pseudo-first order rate of formation of the ketones (2) and (3) was evaluated<sup>†</sup> with different combinations of palladium salts, bases, and complexing agents (Table 1).

<sup>&</sup>lt;sup>+</sup> The rate was measured by monitoring the appearance of the ketones (2) and (3) by g.l.c. in the presence of triethyleneglycol dimethyl ether as internal standard.



**Table 1.** Initial pseudo-first-order rate constants for formation of the ketones (2) and (3).<sup>a</sup>

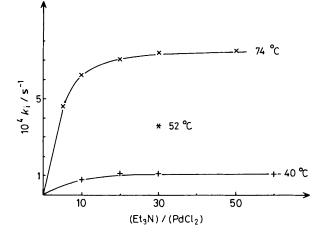
|                |      | Catalyst                       | $10^{5} k_{\rm i}$ | Other ligand         |
|----------------|------|--------------------------------|--------------------|----------------------|
| Entry          | t/°C | (10 <sup>-2</sup> mol. equiv.) | $s^{-1}$           | (mol. equiv.)        |
| 1              | 74   | $PdCl_2(1)$                    | 2.20               | _                    |
| 2 <sup>b</sup> | 74   | $PdCl_2(1)$                    | 38.7               | $Et_{3}N(1)$         |
| 3ь             | 74   | $PdCl_2(1)$                    | 70.0               | $Bu_{3}N(1)$         |
| 4              | 50   | $PdCl_2(1)$                    | 0.06               | $Et_2NH(0.2)$        |
| 5              | 54   | $PdCl_2(1)$                    | 0.06               | Pyridine (0.2)       |
| 6              | 74   | $PdCl_2(1)$                    | 0.05               | $[Me_2NCH_2]_2(0.1)$ |
| 7              | 74   | $Pd(dba)_2(5)^c$               | 3.9                | —                    |
| 8              | 74   | $PdCl_2(4)$                    | 0.13               | $(Ph)_{3}P(0.1)$     |
| 9              | 74   | $Pd[(Ph)_{3}P]_{4}(1)$         | 0.26               |                      |

<sup>a</sup> [But-3-en-2-ol] = [PhI] = [AcONa] = 1 M in dimethylformamide. <sup>b</sup> Without AcONa. <sup>c</sup> dba = dibenzylideneacetone.

 Table 2. Initial rate constants in the presence of sodium acetate and/or tertiary amines.<sup>a</sup>

|       |    | Base                    | $10^{5} k_{\rm i}$ / |
|-------|----|-------------------------|----------------------|
| Entry | R  | (mol. equiv.)           | s <sup>-1</sup>      |
| 1     | Me | AcONa(1)                | 2.2                  |
| 2     | Et | AcONa(1)                | 2.4                  |
| 3     | Me | $Et_3N(1)$              | 38.7                 |
| 4     | Me | $Bu_3N(1)$              | 70.0                 |
| 5     | Et | $Et_3N(1)$              | 30.6                 |
| 6     | Me | $AcONa(1) + Et_3N(0.2)$ | 70.3                 |
| 7     | Et | $AcONa(1) + Et_3N(0.2)$ | 66.7                 |
| 8     | Me | $AcONa(1) + Bu_3N(0.2)$ | 94.4                 |

<sup>a</sup> [RCH(OH)CH=CH<sub>2</sub>] = [PhI] =  $10^2$  [PdCl<sub>2</sub>] = 1 M in dimethylformamide at 74 °C.


Reasonable reaction rates were obtained only with sodium acetate or tertiary amines as bases and palladium chloride in dimethylformamide; these systems were investigated further, and the results are summarised in Table 2.

For the two allylic alcohols employed in this study, the initial rate constants ( $k_i$ ) were considerably higher with  $R'_3N$  (R' = Et or Bu) than with AcONa (compare entries 1 and 2 with 3, 4, and 5, Table 2). This observation strongly suggests that  $R'_3N$  not only neutralises the HX formed in the reaction but also acts as a ligand of the palladium atom to form a very reactive species in the oxidative addition step (equation 2) that could be rate-determining.

In order to clarify this aspect of the reaction, we carried out a kinetic study of the phenylation of but-3-en-2-ol with increasing amounts of Et<sub>3</sub>N in the presence of an excess of AcONa (Figure 1). Our results clearly demonstrate the role of the amine as a ligand of the palladium catalyst. A ratio  $(Et_3N)/(PdCl_2) = 20$  is necessary to ensure the complete formation of the active catalytic species, resulting in maximum rate constants. The same phenomenon was observed with pent-3-en-2-ol (entries 6 and 7 of Table 2).

Although it has been claimed that tertiary amines are not good ligands for palladium<sup>5</sup> our observations are in agreement with the *ortho*-palladation effect provided by benzylic tertiary amines allowing a remarkable regiochemical control of the Heck reaction<sup>6</sup> and isolation of stable *ortho*-palladated aromatic compounds.<sup>6,7</sup>

Variation of the temperature allowed us to determine the thermodynamic activation values for the phenylation of but-3-en-2-ol in the range 40—74 °C under these conditions:



**Figure 1.** Plot of  $k_i$  against (Et<sub>3</sub>N) for the phenylation of but-3-en-2-ol in the presence of sodium acetate.

 $\Delta G^{\ddagger} = 46 \text{ kJ mol}^{-1}, \Delta H^{\ddagger} = 43 \text{ kJ mol}^{-1}, \text{ and } \Delta S^{\ddagger} = -75 \text{ J}$ mol} $^{-1}\text{K}^{-1}$ . These activation values are in the range of the usually measured values for oxidative addition reactions with various transition metals<sup>8</sup> and the largely negative  $\Delta S^{\ddagger}$  value is generally interpreted in terms of an increased solvation due to the increased dipole in going from the ground state to the transition state.<sup>9</sup>

Although not fully understood as yet, a strong synergistic effect has been observed. The initial rate constant of the reaction is greater when a small amount of  $R'_{3}N$  (0.2 mol equiv.) is used in the presence of AcONa than when a tertiary amine is employed alone (compare entry 6 with 3, 7 with 5, and 8 with 4 in Table 2).

We believe that this new aspect of the role of  $R'_{3}N$  should be studied in other palladium catalysed reactions.

In conclusion, we emphasise that the effect of added  $Et_3N$  on the initial rate allows this synthetically important reaction to be run at a lower temperature than those previously employed,<sup>3,4</sup> and under these conditions but-3-en-2-ol (1) was transformed to the arylated ketones (2) and (3) in 97% yield.‡

We acknowledge the financial support of the Centre National de la Recherche Scientifique.

Received, 21st May 1987;§ Com. 696

## References

- 1 W. Smadja, S. Czernecki, G. Ville, and C. Georgoulis, Organometallics, 1987, 6, 166.
- 2 R. F. Heck, Pure Appl. Chem., 1978, 50, 691; Acc. Chem. Res., 1979, 12, 146.
- 3 J. B. Melpolder and R. F. Heck, J. Org. Chem., 1976, 41, 265.
- 4 A. J. Chalk and S. A. Magennis, J. Org. Chem., 1976, 41, 273.
- 5 A. Spencer, J. Organomet. Chem., 1983, 258, 101.
- 6 B. M. Trost and T. R. Verhoeven in 'Comprehensive Organometallic Chemistry,' eds. G. Wilkinson, F. G. A. Stone, and E. W. Abel, Pergamon Press, Oxford, 1982, vol. 8, p. 799.
- 7 B. J. Brisdon, P. Nair, and S. F. Dyke, Tetrahedron, 1981, 37, 173.
- 8 R. G. Pearson and P. E. Figdore, J. Am. Chem. Soc., 1980, 102, 1541 and references cited therein.
- 9 J. F. Harrod and C. A. Smith, J. Am. Chem. Soc., 1970, 92, 2699.

<sup>‡</sup> The reaction was complete in 4 h at 74 °C with 2 mol. equiv. of PhI.

§ Received in revised form, 6th October 1987.