Preparation and Reactivity of 16-Electron 'Half-Sandwich' Ruthenium Complexes; X-Ray Crystal Structure of ($\boldsymbol{\eta}^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}$) Ru(PPri_{3}) Cl

Brian K. Campion, Richard H. Heyn, and T. Don Tilley*

Department of Chemistry, D-006, University of California at San Diego, La Jolla, California 92093, U.S.A.
The new 16-electron ruthenium compounds ($\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}$) $\mathrm{Ru}(\mathrm{L}) \mathrm{CI}\left[(1), \mathrm{L}=\mathrm{PPri}_{3} ;(2), \mathrm{L}=\mathrm{PCy}_{3}\right]$ ($\left.\mathrm{Cy}=\mathrm{cyclohexyl}\right)$ were prepared from $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{RuCl}_{4}\right.$ and PPri_{3} or PCy_{3}, respectively, and the X-ray crystal structure of (1) has been determined; reactions of the title compounds with $\mathrm{CO}, \mathrm{C}_{2} \mathrm{H}_{4}$, pyridine, and PhSiH_{3} are described.

[^0]\[

\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{RuCl}_{4}+4 \mathrm{~L} \xrightarrow{\mathrm{CH}_{2} \mathrm{Cl}_{2}} \underset{\longrightarrow}{4\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Ru}(\mathrm{~L}) \mathrm{Cl}}\left($$
\begin{array}{rl}
(\mathbf{1}), \mathrm{L} & =\mathrm{PPri}_{3} \\
(\mathbf{2}), \mathrm{L} & =\mathrm{PCy}_{3}
\end{array}
$$\right.\right.
\]

terized by n.m.r., i.r., and elemental analyses. \dagger U.v.-visible spectra revealed two absorptions for (1) at $283(\varepsilon 2662)$ and
\dagger Selected data for (1): Satisfactory elemental analysis was obtained for C, H and P ; ${ }^{1} \mathrm{H}$ n.m.r. ($300 \mathrm{MHz},\left[{ }^{2} \mathrm{H}_{6}\right.$]benzene, $20^{\circ} \mathrm{C}$): $\delta 1.07(\mathrm{q}$, $\left.18 \mathrm{H}, \mathrm{P}-\mathrm{C}-\mathrm{CH}_{3}\right), 1.43\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{5}\right), 2.23(\mathrm{~m}, 3 \mathrm{H}, \mathrm{P}-\mathrm{CH})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. $\left(75.5 \mathrm{MHz},\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ benzene, $\left.20^{\circ} \mathrm{C}\right): \delta 11.2\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)$, $20.4\left(\mathrm{P}-\mathrm{C}-\mathrm{CH}_{3}\right), 24.2\left(\mathrm{~d}, J_{\mathrm{PC}} 15.1 \mathrm{~Hz}, \mathrm{P}-\mathrm{CH}\right), 74.6\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. $\left(121.5 \mathrm{~Hz},\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ benzene, $\left.20^{\circ} \mathrm{C}\right): \delta 51.7$ p.p.m.

For (2): Satisfactory elemental analysis for C, H, and P ; ${ }^{1} \mathrm{H}$ n.m.r. $\left(300 \mathrm{MHz},\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ benzene, $\left.20^{\circ} \mathrm{C}\right): \delta 1.15-2.26(\mathrm{~m}, 33 \mathrm{H}, \mathrm{P}-\mathrm{Cy}), 1.48$ (s, $15 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{5}$) ; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. ($75.5 \mathrm{MHz},\left[{ }^{2} \mathrm{H}_{6}\right]$ benzene, $20^{\circ} \mathrm{C}$): δ $11.33\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right), 27.0(\mathrm{~s}), 28.1\left(\mathrm{~d}, J_{\mathrm{PC}} 10.2 \mathrm{~Hz}, \mathrm{PCy}_{3}\right), 30.7(\mathrm{~s}), 34.2(\mathrm{~d}$, $\left.J_{\mathrm{PC}} 17 \mathrm{~Hz}, \mathrm{PCy}_{3}\right), 74.5\left(C_{5} \mathrm{Me}_{5}\right)$; ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. (121.5 Hz , [${ }^{2} \mathrm{H}_{6}$]benzene, $20^{\circ} \mathrm{C}$): $\delta 40.4$ p.p.m.

Figure 1. ORTEP view, based on 50% thermal ellipsoids, and labelling scheme for (1).

576 nm ($\varepsilon 1692$), and for (2) at 284 (ε 3027) and 580 nm ($\varepsilon 1742$). Addition of 4 equiv. of PEt_{3} to $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{RuCl}\right]_{4}$ in [${ }^{2} \mathrm{H}_{6}$]benzene produced a $50: 50$ mixture of the previously described $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Ru}\left(\mathrm{PEt}_{3}\right)_{2} \mathrm{Cl}^{4}$ and the $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right.$ RuCl_{4} starting material (by ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ n.m.r.). To our knowledge, (1) and (2) represent the first examples of isolable, 16-electron group VIII complexes of the type $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{R}_{5}\right) \mathrm{M}(\mathrm{L}) \mathrm{X}$.

An X-ray crystal structure of (1) was undertaken to determine the co-ordination geometry about ruthenium. \ddagger An ORTEP view of the molecule is presented in Figure 1. The environment about the Ru atom corresponds to that of a two-legged piano stool, with a $\mathrm{Cl}-\mathrm{Ru}-\mathrm{P}$ angle of $91.5(1)^{\circ}$. The Cl, P, and Ru atoms and the centroid of the $\mathrm{C}_{5} \mathrm{Me}_{5}$ ligand are very nearly planar (mean deviation $0.003 \AA$; maximum deviation is by $\mathrm{Ru}, 0.007 \AA$), and this plane is perpendicular $\left(90.2^{\circ}\right)$ to the mean plane formed by all the carbon atoms of the $\mathrm{C}_{5} \mathrm{Me}_{5}$ ligand. The $\mathrm{Ru}-\mathrm{Cl}$ bond length in (1), $2.365(2) \AA$, is significantly shorter than the corresponding distances in $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}[2.453(2) \AA]$ and $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Ru}-$ $\left(\mathrm{PMe}_{3}\right)_{2} \mathrm{Cl}$ (average $2.44 \AA$), ${ }^{5}$ reflecting the smaller co-ordination number in (1). Note that the $\mathrm{Ru}-\mathrm{Cl}$ distance in $\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}_{2}$ is $2.387(7) \AA{ }^{6}{ }^{6}$ The Ru-P distance in (1) [2.395(2) \AA], however, is longer than the $\mathrm{Ru}-\mathrm{P}$ distances in $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}$ (average $2.34 \AA$) and $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Ru}$ $\left(\mathrm{PMe}_{3}\right)_{2} \mathrm{Cl}$ (average $2.28 \AA$), perhaps because of steric congestion about the donor atom of the PPri_{3} ligand.

Preliminary investigations reveal the co-ordination of sterically undemanding 2 -electron donor ligands to (1) and (2)

[^1]\[

$$
\begin{gather*}
\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Ru}(\mathrm{~L}) \mathrm{Cl} \frac{\mathrm{~L}^{\prime}}{\text { pentane }}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Ru}(\mathrm{~L})\left(\mathrm{L}^{\prime}\right) \mathrm{Cl} \tag{2}\\
\mathrm{~L}=\mathrm{PCy}_{3}, \mathrm{~L}^{\prime}=\mathrm{CO} \\
\mathrm{~L}=\operatorname{PPr}^{\mathrm{i}}{ }_{3}, \mathrm{~L}^{\prime}=\text { pyridine }(\text { pyr }), \mathrm{C}_{2} \mathrm{H}_{4}
\end{gather*}
$$
\]

(equation 2). Complex (2) reacts with 1 equiv. of CO in pentane to give yellow crystals of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Ru}\left(\mathrm{PCy}_{3}\right)$ $(\mathrm{CO}) \mathrm{Cl}(3)$ in 76% isolated yield. The CO ligand in (3) appears as a doublet at $\delta 210.1\left({ }^{2} J_{\mathrm{PC}} 22.5 \mathrm{~Hz}\right)$ in the ${ }^{13} \mathrm{C}$ n.m.r. spectrum, and the v_{CO} stretching frequency occurs at 1908 cm^{-1} (Nujol mull). Attempts to form mixed phosphine complexes have met with little success. For example, reaction of (1) with 1 equiv. of PMe_{3} in pentane at $-78^{\circ} \mathrm{C}$ gave only the known compound $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Ru}\left(\mathrm{PMe}_{3}\right)_{2} \mathrm{Cl}$ and unreacted (1). ${ }^{7}$ Upon addition of 1 equiv. of $\mathrm{PPr}^{3}{ }_{3}$ to compound (1) in [${ }^{2} \mathrm{H}_{6}$]benzene, only free phosphine and (1) were observed by ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ n.m.r. spectroscopy. Evidently the steric properties of PPri_{3} (cone angle $\left.170^{\circ}\right)^{8}$ prevent formation of the bis-phosphine complex $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Ru}\left(\mathrm{PPr}_{3}\right)_{2} \mathrm{Cl}$.

$$
\begin{gather*}
\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Ru}_{(\mathbf{3})}\left(\mathrm{PCy}_{3}\right)(\mathrm{CO}) \mathrm{Cl} \\
\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Ru}_{\left(\mathrm{PPr}^{\mathrm{i}}{ }_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{Cl}}^{(\mathbf{4})} \\
\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Ru}_{(\mathbf{5})}\left(\mathrm{PPri}_{3}\right)(\mathrm{pyr}) \mathrm{Cl} \\
\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Ru}_{\left(\mathrm{PPri}_{3}\right)\left(\mathrm{SiH}_{2} \mathrm{Ph}\right)(\mathrm{H}) \mathrm{Cl}}^{(\mathbf{6})}
\end{gather*}
$$

When a pentane solution of (1) was pressurized with ethylene (30 p.s.i.), the initial blue colour turned to red within 10 min . However, when the pressure was released during work-up, the blue colour returned and only (1) was isolated from solution. The labile product of ethylene addition to (1), $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Ru}\left(\mathrm{PPr}_{3}{ }_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{Cl}$ (4), was prepared in situ by addition of excess ethylene to (1) and was characterized utilizing variable temperature n.m.r. spectroscopy. At $-65^{\circ} \mathrm{C}$ in $\left[{ }^{2} \mathrm{H}_{8}\right]$ toluene, the inequivalent protons of co-ordinated ethylene are clearly evident.§

Pyridine co-ordinates to (1) to give $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Ru}$ $\left(\mathrm{PPri}_{3}\right)(\mathrm{pyr}) \mathrm{Cl}(5)$. Yellow-orange needles of (5) were isolated from hexane in 77% yield and characterized by n.m.r. and elemental analysis. $\|$ No reactions were observed between (1) and CO_{2} (pentane, 50 p.s.i., $20^{\circ} \mathrm{C}$), H_{2} (pentane, 100 p.s.i., $20^{\circ} \mathrm{C}$), or but-2-yne ($\left[{ }^{2} \mathrm{H}_{6}\right]$ benzene, 2 equiv., $20^{\circ} \mathrm{C}$).

Reaction of (1) with the silane $\mathrm{H}_{3} \mathrm{SiPh}$ proceeds by oxidative addition to give the $\mathrm{Ru}^{I V}$ silyl $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Ru}$ $\left(\mathrm{PPri}_{3}\right)\left(\mathrm{SiH}_{2} \mathrm{Ph}\right)(\mathrm{H}) \mathrm{Cl}(6)$, isolated as analytically pure, golden yellow crystals from diethyl ether in 66% yield. In the ${ }^{1} \mathrm{H}$ n.m.r. spectrum, the $\mathrm{Ru}-\mathrm{H}$ resonance for (6) appears as a

[^2]doublet at $\delta-10.33$, and the ${ }^{2} J_{\mathrm{PH}}$ coupling constant (30.6 Hz) indicates a cis-arrangement of the phosphine and hydride ligands. ${ }^{7}$ The inequivalent $-\mathrm{SiH}_{2} \mathrm{Ph}$ protons are observed at δ 4.97 and 5.41. The $v_{\text {RuH }}$ and $v_{\text {SiH }}$ i.r. stretches overlap in the region 2000- $2050 \mathrm{~cm}^{-1}$; however, the strong $\mathrm{Si}-\mathrm{H}$ deformation frequency is observed at $831 \mathrm{~cm}^{-1}$ (Nujol mull).
These results show that compounds (1) and (2) may serve as useful reagents for the preparation of compounds of the types $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Ru}(\mathrm{L})\left(\mathrm{L}^{\prime}\right) \mathrm{Cl}^{9}$ and $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Ru}(\mathrm{L})(\mathrm{X})(\mathrm{Y}) \mathrm{Cl}$ ($\mathrm{L}=\mathrm{PPr}^{\mathrm{i}}{ }_{3}$ or PCy_{3}). We have also observed that under some reaction conditions the bulky phosphine ligands of (1) and (2) are readily displaced. Further reports will address additional aspects of the reactivity of (1) and (2).

We thank the National Science Foundation for their generous support and the DoD University Research Instrumentation Program (Grant DAAL03-87-G-0071) for funds to purchase an X-ray diffractometer. We also thank Dr . P. Fagan for details concerning the synthesis of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right.$ RuCl_{4}.

Received, 2nd October 1987; Com. 1431

References

1 (a) J. P. Collman and L. S. Hegedus, 'Principles and Applications of Organotransition Metal Chemistry,' University Science, Mill Valley, CA, 1980; (b) C. M. Lukehart, 'Fundamental Transition Metal Organometallic Chemistry,' Brooks/Cole, Monterey, CA, 1985; (c) M. Rosenblum, J. Organomet. Chem., 1986, 300, 191; (d) M. O. Albers, D. J. Robinson, and E. Singleton, Coord. Chem. Rev., 1987, 79, 1.
2 See for example: (a) D. B. Pourreau and G. L. Geoffroy, $A d v$. Organomet. Chem., 1985, 24, 280; (b) H. Lehmkuhl, J. Grundke, and R. Mynott, Chem. Ber., 1983, 116, 159; (c) R. J. Kazlauskas and M. S. Wrighton, Organometallics, 1982, 1, 602.
3 P. J. Fagen, M. D. Ward, J. C. Calabrese, J. Caspar, and P. J. Krusic, J. Am. Chem. Soc., submitted for publication.
4 R. A. Paciello, Ph.D. Thesis, California Institute of Technology, 1987.

5 M. I. Bruce, F. S. Wong, B. W. Skelton, and A. H. White, J. Chem. Soc., Dalton Trans., 1981, 1398.
6 S. J. LaPlaca and J. A. Ibers, Inorg. Chem., 1965, 4, 778.
7 T. D. Tilley, R. H. Grubbs, and J. E. Bercaw, Organometallics, 1984, 3, 274.
8 C. A. Tolman, Chem. Rev., 1977, 77, 313.
9 F. M. Conroy-Lewis and S. J. Simpson, J. Organomet. Chem., 1987, 322, 221.

[^0]: A plethora of mechanistic and synthetic information has been reported regarding compounds of the type $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{FeL}_{2} \mathrm{X}$, and related Ru and Os systems. ${ }^{1}$ In many instances reactive 16-electron intermediates formed via thermal or photoinduced dissociation of L play an important role in the chemistry of these species. ${ }^{2}$ Here we report the preparation, characterization, and initial reactivity studies of stable, co-ordinatively unsaturated 'half sandwich' compounds (η^{5-} $\left.\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Ru}\left(\mathrm{PR}_{3}\right) \mathrm{Cl}$.

 Combination of methylene chloride solutions of PR_{3} [4 equiv.; $\mathrm{R}=\mathrm{Pr}^{\mathrm{i}}$ or $\mathrm{Cy},(\mathrm{Cy}=$ cyclohexyl $\left.)\right]$ and $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right.$ $\mathrm{RuCl}_{4}{ }^{3}$ (1 equiv.) at room temperature produced an immediate colour change from dark orange to deep blue. The highly crystalline 16 -electron complexes ($\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}$) $\mathrm{Ru}(\mathrm{L}) \mathrm{Cl}$ [(1), $\mathrm{L}=\mathrm{PPr}_{3} ;(2), \mathrm{L}=\mathrm{PCy}_{3}$] were isolated as blue crystals from pentane in 92 and 82% yields, respectively (equation 1).

 Both reactions are quantitative in $\left[{ }^{2} \mathrm{H}_{6}\right]$ benzene by ${ }^{1} \mathrm{H}$ n.m.r. spectroscopy. Compounds (1) and (2) were charac-

[^1]: \ddagger Crystal data for (1): $\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{ClPRu}$, orthorhombic, $P 22_{1} 2_{1}, a=$ $7.897(2), b=15.216(4), c=17.820(4) \AA, U=2141(1) \AA^{3}, Z=4, D_{c}$ $=1.34 \mathrm{~g} / \mathrm{cm}^{3} \quad F(000)=904, \mu=9 \mathrm{~cm}^{-1}$, Mo- K_{α} radiation $(\lambda=$ $0.71073 \AA)$. Data were collected at $c a .23^{\circ} \mathrm{C}(296 \mathrm{~K})$ on a Nicolet R $3 \mathrm{~m} / \mu$ automated diffractometer using $\theta / 2 \theta$ scans (variable scan speed, $1.5-15 \mathrm{deg} . \mathrm{min}^{-1}$) and were corrected for absorption. Of 2201 reflections collected ($3^{\circ} \leqslant 2 \theta \leqslant 50^{\circ}$), 2179 were independent. The space group was uniquely determined from systematic absences. The Ru atom was located by Patterson methods, and all remaining non-hydrogen atoms were located and refined anisotropically by difference Fourier and full-matrix least-squares methods (SHELXTL PLUS computer programs, Nicolet Instrument Corp., Madison, WI). The refinement was based on 1873 observed reflections $\left[F_{\circ}>3 \sigma\left(F_{0}\right)\right]$. Hydrogen atoms were calculated and fixed in ideal positions $[d(\mathrm{C}-\mathrm{H})$ $\left.=0.96 \AA, U=60 \AA^{2} \times 10^{3}\right]$. The absolute configuration was tested by inverting the co-ordinates of all atoms and re-refining the structure. The results indicated that the original model was the correct enantiomorph. $R_{\mathrm{F}}=2.97, R_{\mathrm{wF}}=3.61 \%$, G.O.F. $=1.335$, data $/$ parameter ratio $=9.4, \Delta(\rho)=0.28 \mathrm{e} / \AA^{3}(1.11 \AA$ from Ru. $1.34 \AA$ from Cl).

[^2]: § Selected data for (4): ${ }^{1} \mathrm{H}$ n.m.r. $\left(300 \mathrm{MHz},\left[{ }^{2} \mathrm{H}_{8}\right]\right.$ toluene, $\left.-65^{\circ} \mathrm{C}\right): \delta$ $1.67,2.58,2.71,2.84\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{2} \mathrm{H}_{4}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. (121.5 MHz , $\left[{ }^{2} \mathrm{H}_{8}\right]$ toluene, $20^{\circ} \mathrm{C}$): $\delta 44.3$ p.p.m. See ref. 2(b) for similar $\mathrm{Ru}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)$ compounds.

 - Selected data for (5): Satisfactory elemental analysis for $\mathrm{C}, \mathrm{H}, \mathrm{Cl}, \mathrm{N}$, and P, m.p. $117-118^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ n.m.r. $\left(300 \mathrm{MHz},\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ benzene, $20^{\circ} \mathrm{C}$): $\delta 1.15\left(\mathrm{q}, 18 \mathrm{H}, \mathrm{P}-\mathrm{C}-\mathrm{CH}_{3}\right), 1.40\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{5}\right), 2.43(\mathrm{~m}, 3 \mathrm{H}$, P-CH), 6.54, 6.87, $9.00\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. $(75.5 \mathrm{MHz}$, ${ }^{2}{ }^{2} \mathrm{H}_{6}$]benzene, $\left.20^{\circ} \mathrm{C}\right): \delta 10.3\left(\mathrm{C}_{5} M e_{5}\right), 20.34\left(\mathrm{P}-\mathrm{C}-\mathrm{CH}_{3}\right), 24.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}\right.$ $13.6 \mathrm{~Hz}, \mathrm{P}-\mathrm{CH}), 78.5\left(\mathrm{~d}, J_{\mathrm{PC}} 0.8 \mathrm{~Hz}, C_{5} \mathrm{Me}_{5}\right), 123.4,134.5,154.3$ $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. $\left(121.5 \mathrm{MHz},\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ benzene, $\left.20^{\circ} \mathrm{C}\right): \delta 45.3$ p.p.m.

