Bleomycin Metal Site Models with Apical Imidazole or Sulphydryl Donors

Thomas J. Lomis,^a Jerome F. Siuda,^a and Rex E. Shepherd^{b*}

^aDepartment of Pharmaceutical Sciences and ^bDepartment of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, U.S.A.

New synthetic models for the bleomycin (BLM) metal ion binding site which contain the terminal binding group of imidazole (HAPH) or S–Me, SCH₂C₆H₄OMe, and –SH (SAPH 1—3) derivatives have been prepared; Fe^{III}(HAPH)/O₂ yielded 53%, and Fe^{III}(HPAH)/H₂O₂ 63%, of the HO· generated by Fe^{III} (BLM)/O₂.

Bleomycin (BLM) is an antibiotic glycopeptide recognized as an antitumour drug.¹ The Fe^{II}(BLM) complex is an oxygen sensitive complex which is capable of DNA-nicking; the rapid activation of O_2 by Fe^{II}(BLM) is believed to account for its antitumour activity.² The structures of Zn^{II}, Fe^{II}, Cu^{II}, and Co^{III} metallobleomycins have been studied previously.³ Synthetic methodology has been recently applied to constructing functional metal-ion binding core units which mimic the metal-ion binding site of bleomycin. These efforts have previously included the Fe^{II} and Cu^{II} complexes of PYML

(PYML = N-[6-({[(S)-2-amino-2-(carbamoyl)-ethyl]amino}methyl)pyridine-2-carbamoyl]-L-histidine)⁴ and AMPHIS [AMPHIS = methyl 2-(2-aminoethyl)aminomethyl-pyridine-6-carboxylhistidinate]⁵ which contain the bleomycin core donors of imidazole, amide nitrogen, pyridine, and secondary amine joined to a terminal primary amine as in (1). We have successfully prepared a related series of compounds possessing a terminal imidazole functionality (HAPH) or terminal sulphydryl or alkylated sulphur (SAPH 1—3). The synthetic methods for preparing HAPH and SAPH 1—3, ¹H and ¹³C n.m.r. spectra, and high resolution mass spectral data will be presented in detail elsewhere.^{6—8} Representative data are provided below for HAPH and SAPH-3.[†]

The new series provides interesting modifications of the bleomycin metal ion binding site in that both HAPH and SAPH 1—3 Fe^{II} complexes are even closer to the cytochromes which Fe^{II}(BLM) is known to mimic,^{1.9} *e.g.* inner-sphere binding of O_2 and CO; generation of oxygen radical species including O_2^- , HO[•], and ferryl oxygen (Fe^{IV}O), much in the manner of the cytochrome P-450, catalase, peroxidase, and O_2 storage metalloproteins.

Fe^{II}(HAPH) and Fe^{II}(SAPH-3) exhibit amide deprotonation with a pK_a of *ca*. 5.5 compared to 5.2 for Fe^{II}(BLM). Solutions appear cherry to yellow-orange in colour upon loss of the amide hydrogen. The Fe^{II} complexes exhibit a resolved

Figure 1. HODMPO· formed during $Fe^{II}(HAPH)$ oxidations: (A) [H₂O₂] = 0.49 M, [Fe(HAPH)] = 8.33 × 10⁻⁴ M, pH = 7.50; (B) O₂ saturated, [Fe(HAPH)] = 1.34 × 10⁻⁴ M, pH = 7.50; 15.0 mW, 9.482 GHz, 1.60 G mod. amp., 8.0 min scans, 3.0 s time constant; (A) RG = 5.0 × 10⁴, (B) RG = 8.0 × 10⁴.

shoulder band in the visible region of the spectrum ($\lambda_{max}, \varepsilon$, pH): Fe^{II}(HAPH), 445 nm, 278 dm³ mol⁻¹ cm⁻¹, 7.75; Fe^{II}(SAPH-3), 475, 200, 8.00. These values are comparable to the literature values for Fe^{II}(BLM), 476 nm, 380 dm³ mol⁻¹ cm⁻¹;^{2a} Fe^{II}(PYML), 465, 300.^{9a} Like Fe^{II}(BLM), Fe^{II}-(HAPH) and Fe^{II}(SAPH-3) bind CO reversibly. Fe^{II}-(HAPH)CO and Fe^{II}(SAPH-3)CO exhibit a strong transition with a flat u.v. maximum at 360—390 nm with ε_{360} = 968 for Fe^{II}(HAPH)CO and near 400 nm, ε_{400} = 715, for Fe^{II} (SAPH-3)CO, compared to Fe^{II}(PYML)CO at 390, ε_{390} = 2000.^{9a} The equilibrium constants for CO binding are approximately 2.7 × 10³ dm³ mol⁻¹ for Fe^{II}(HAPH), Fe^{II}(SAPH-3) and Fe^{II}(BLM).⁷

The ability of Fe¹¹(HAPH) and Fe¹¹(SAPH-3) to activate O₂ as a potential drug functional unit which forms radicals that escape the solvent cage of the Fe(L)O2 complex was examined using DMPO (DMPO = 5,5-dimethyl-1-pyrroline 1-oxide) and PBN (PBN = N-t-butyl- α -phenylnitrone) radical traps. 5a,9a,10-12 Fell(BLM) was prepared from blenoxane as a control to evaluate the efficiency of radical production.[‡] The amount of HO, trapped as the spin-adduct HODMPO ($a_N =$ $a_{\rm H}$ = 15.0 G), was determined at [DMPO] $\simeq 0.24$ M. Autoxidation of 1.34×10^{-3} M Fe^{II}(HAPH) proceeds in ca. 5 seconds upon O₂ saturation (pH 7-8) with loss of the tangerine solution colour. A yellow solution of FeIII(HAPH) is formed. Autoxidation of Fe^{II}(SAPH-3) $(2.00 \times 10^{-3} \text{ m})$ proceeds under similar conditions with the appearance of an olive green intermediate for the first 10 seconds; the intermediate fades to the yellow colour of FeIII(SAPH-3) in ca. 5 seconds. No oxygen-centred radical (HO, O_2^- , HO₂) is trapped for the Fe^{II}(SAPH-3)/O₂ reaction. The protected S-Me complex, Fe^{II}(SAPH-1), yielded a small amount of trappable radical with PBN in the presence of ethanol as a mediator.8 The presence of HODMPO- and a small amount of HO_2DMPO is readily detected for the Fe^{II}(BLM)/ O_2 control. HO. originates as the dismutation or further reduction product of O_2^- . Fe^{II}(HAPH) reacts with H_2O_2 in the presence

[†] SAPH-3: (trihydrochloride salt) ¹H n.m.r. (D₂O) δ 9.02 (s, 1H, Imid-C-2-*H*) 8.6—8.2 (m, 2H, PyrC-3- and C-5-*H*), 8.2—7.9 (m, 1H, PyrC-4-*H*), 7.70 (s, 1H, Imid-C-5-*H*), 4.98 (s, 2H, PyrC*H*₂N), 4.2 (m, 2H, CONHC*H*₂CH₂), 3.84 (t, 2H, ImidC*H*₂CH₂), 3.6—3.1 (m, 4H, SC*H*₂C*H*₂N); ¹³C n.m.r. (D₂O) δ 167.0 (CONH), 8 ArC at δ 151.3, 149.5, 140.9, 134.4, 132.0, 127.4, 123.3, 117.4, 51.2, 50.9 (PyrC*H*₂NH₂+*C*H₂), 3.9.4 (CONHC*H*₂), 25.4 (ImidC*H*₂), 21.2 (SC*H*₂C*H*₂N); i.r. (KBr) 3425 (N–H), 1640 cm⁻¹ (amide C=O); mass spectrum *m*/z, 305 (*M*⁺), 272 (100%), 258, 245; *M*⁺ 305.1313 (calc. 305.1317).

HAPH: ¹H n.m.r. (CD₃OD) δ 7.92, 7.87 (d, s, Imid-C-2-*H*), 7.59 (m, 3H, Py ring-H), 6.85 (d, 2H, Imid-C-5-*H*), 3.98 (s, PyrCH₂N), 3.65 (m, 2H, Imid-CH₂CH₂NHCO), 2.9 [br., 6H, Imid(1)CH₂, Imid(2)CH₂CH₂]: ¹³C n.m.r. (CD₃OD) δ 166.42 (CO), 8 ArC at δ 150.61, 139.39, 126.41, 121.73, 117.94, 117.45, 53.90 (PyrCH₂N), 51.79 (CONHCH₂CH₂Imid), 50.87 [NHCH₂Imid(2)], 49.89, 49.46 [CH₂Imid(1).(2)]: mass spectrum *m*/*z* 339 (*M*⁺), 258, 230 (100%), 95; (*M*⁺) 339.1806 (calc. 339.1808).

[#] Blenoxane was kindly provided by the Bristol-Myers Company.

Figure 2. E.s.r. spectrum for Cu^{II}(HAPH) and Cu^{II}(SAPH-3) at pH 9.6: (A) [Cu^{II}(HAPH)] = 2.20×10^{-3} M, 20.0 mW, 9.019 GHz, 1.60 mod. amp., 8.0 min scan, 1.0 s time constant, in liquid N₂, 77 K. (B) [Cu^{II}(SAPH-3)] = 8.85×10^{-3} M, 20.0 mW, 9.090 GHz, 1.25 mod. amp., 4.0 min scan, 1.0 s time constant, in Varian temperature controller, 113 K.

of DMPO to yield HODMPO· (Figure 1A). The Fe^{II}-(HAPH)/O₂ reaction also forms HODMPO· (Figure 1B; signal has been averaged from 4 scans). Based on a per mole production of HO· relative to the Fe^{II}(BLM)/O₂ control, Fe^{II}(HAPH)/O₂ generates HO· at 53% the efficiency of Fe^{II}(BLM)/O₂. The production of HO· *via* Fe^{II}(HAPH)/H₂O₂ is 63% as efficient. Absence of a trappable oxygen radical, together with the formation of the olive green intermediate for the Fe^{II}(SAPH-3)/O₂ system and minor amount of reactivity for the protected Fe^{II}(SAPH-1)/O₂ system, implicates the rapid 2e⁻ reduction of the initial O₂ adduct *via* oxidation of both the Fe^{II} and sulphydryl groups within the solvent cage of Fe^{II}(SAPH-3).

Cull derivatives of the HAPH and SAPH 1-3 series exhibit amide deprotonation with a concomitant increase in ligand field strength with pK_a values near 6.5. Cu^{II}(HAPH) possesses a visible maximum at 625 nm (pH 3.18) shifting to 570 nm above pH 7.0. The co-ordination geometry of Cu^{II} complexes with ligands similar to the bleomycin core changes from trigonal bipyramidal below pH~3, but adopts the pseudo-square-planar co-ordination of the primary core donors (with co-ordinated deprotonated amide) above pH $\sim 6.5.6$ The e.s.r. spectra in 50% dmso (dmso = dimethyl sulphoxide) -H₂O glasses¹³ of Cu^{II}(HAPH) and Cu(SAPH-3) are shown in Figures 2A and B, respectively, at pH 9.6. A detailed pH-dependent study of the e.s.r. spectra for Cu^{II}(SAPH 1-3) in 50:50 H₂O-dmso frozen glasses is reported elsewhere.6 The Cu^{II} complexes of HAPH and SAPH-3 retain their respective structures from pH 6.5 to 9.6. The spectra shown in 2A for Cu^{II}(HAPH) and 2B for Cu^{II}(SAPH-3) are quite similar to the square-pyramidal co-ordination reported for Cu^{II}(AMPHIS) $(g_{\parallel} 2.21, g_{\perp} 2.05, A_{\perp} 178 \text{ G})^5$ and Cu^{II}(BLM) $(g_{\parallel} 2.21, g_{\perp} 2.06, A_{\parallel} 183 \text{ G})^{5.14}$ compared to Cu^{II}(HAPH) $(g_{\parallel} 2.22, g_{\perp} 2.01, A_{\parallel} 201 \text{ G})$ and Cu^{II}(SAPH-3) $(g_{\parallel} 2.10, g_{\perp} 1.96, A_{\parallel} = 144 \text{ G})$ (G = 10⁻⁴ T); the slightly weaker ligand field due to the sulphydryl (or H_2O) as the axial ligand in Cu^{II}(SAPH-3) is evident from the reduced values of the e.s.r. parameters. The similarity of axial N-donors in Cu^{II}(HAPH) and Cu^{II}(AMPHIS) or Cu^{II}(BLM) is apparent. Further investigations into oxygen activation, by systems related to HAPH and SAPH 1–3 are currently in progress.

Received, 25th August 1987; Com. 1253

References

- 1 Y. Sugiura, T. Takita, and H. Umezawa, 'Bleomycin Antibiotics: Metal Complexes and Their Biological Action' in *Metal Ions in Biological Systems*, 1985, **19**, 81–108.
- 2 (a) E. A. Sausville, J. Peisach, and S. B. Horwitz, Biochem. Biophys. Res. Commun., 1976, 73, 814; (b) J. W. Lown, and S. K. Sim, ibid., 1977, 77, 1150; (c) E. A. Sausville, R. W. Stein, J. Peisach, and S. B. Horwitz, Biochemistry 1978, 17, 2746; (d) T. Takita, Y. Muraoka, T. Nakatani, A. Fujii, Y. Iitaka, and H. Umezawa. J. Antibiot., 1978, 31, 1073; (c) H. Umezawa, Prog. Biochem. Pharmacol., 1976, 11, 18.
- N. J. Oppenheimer, L. O. Rodriguez, and S. M. Hecht, Proc. Nat. Acad. Sci. USA, 1979, 76, 5616; R. E. Lenkinski and J. L. Dallas, J. Am. Chem. Soc., 1979, 101, 5902; M. Tsukayama, C. R. Randall, F. S. Santillo, and J. C. Dabrowiak, *ibid.*, 1981, 103, 458; J. C. Dabrowiak, F. T. Greenaway, F. S. Santillo, and S. T. Crooke, Biochem. Biophys. Res. Commun., 1979, 91, 721; J. C. Dabrowiak and M. Tsukayama, J. Am. Chem. Soc., 1981, 103, 7543; Y. Iitaka, H. Nakamura, T. Nakatani, Y. Murata, A. Fujii, T. Takita, and H. Umezawa, J. Antibiot., 1978, 31, 1070.
- 4 M. Otsuka, M. Yoshida, S. Kobayashi, M. Ohno, Y. Sugiura, T. Takita and H. Umezawa, J. Am. Chem. Soc., 1981, 103, 6986.
- 5 (a) J.-P. Henichart, J.-L.Bernier, R. Houssin, M. Lohez, A. Kenani, and J.-P. Catteau, *Biochem. Biophys. Res. Commun.*, 1985, **126**, 1036; (b) J.-P. Henichart, R. Houssin, J.-L. Bernier, and J.-P. Catteau, *J. Chem. Soc., Chem. Commun.*, 1982, 1295.
- 6 T. J. Lomis, J. Martin, B. McCloskey, S. Siddiqui, R. E. Shepherd, and J. F. Siuda, J. Am. Chem. Soc., 1988, submitted for publication.
- 7 T. J. Lomis, M. G. Elliott, and R. E. Shepherd, *Inorg. Chem.*, to be submitted for publication.
- 8 T. J. Lomis, M.Sc. Thesis, University of Pittsburgh 1987; Univ. Microfilms, Ann Arbor, 1987.
- 9 (a) Y. Sugiura, J. Am. Chem. Soc., 1980, 102, 5208; (b) Y. Sugiura, J. Kuwahara, and T. Suzuki, J. Chem. Soc., Chem. Commun., 1982, 908; (c) Y. Sugiura, T. Suzuki, J. Kuwahara, and H. Tonaka, Biochem. Biophys. Res. Commun., 1982, 105, 1511.
- 10 E. G. Janzen, Acc. Chem. Res., 1971, 4, 31; C. A. Evans, Aldrichimica Acta, 1979, 12, 23.
- 11 T. K. Myser and R. E. Shepherd, Inorg. Chem., 1987, 26, 1544.
- 12 C. R. Johnson, T. K. Myser, and R. E. Shepherd, *Inorg. Chem.*, 1988, in the press; R. E. Shepherd, T. K. Myser, and M. G. Elliott, *ibid.*, 1988, in the press.
- 13 S. Siddiqui and R. E. Shepherd, Inorg. Chem., 1986, 25, 3869.
- 14 T. Sugiura, M. Suzuki, S. Otsuka, M. Kobayashi, M. Ohno, T. Takita, and H. Umezawa, J. Biol. Chem., 1983, 258, 1328; J. C. Dabrowiak, F. T. Greenaway, W. F. Longo, M. Van Husen, and S. T. Crooke, Biochim. Biophys. Acta, 1978, 517, 517.