Synthesis of Chiral 5-Substituted Cyclohex-2-enones from 5-Trimethylsilylcyclohex-2-enone

Morio Asaoka,* Kunihisa Shima, and Hisashi Takei

Department of Life Chemistry, Tokyo Institute of Technology, Yokohama 227, Japan

Optically active and racemic 5-substituted cyclohex-2-enones were synthesized from 5-trimethylsilylcyclohex-2-enone.

In connection with our continuing study¹ on the utilization of 5-trimethylsilylcyclohex-2-enone (1) in natural product synthesis, we have examined the two-step access to 5-substituted cyclohex-2-enones from (1) [Scheme 1, (1) \rightarrow (2) \rightarrow (3)]. Cyclohexenone derivatives are useful intermediates for the syntheses of a wide variety of natural products;² furthermore, the availability of such compounds with optical activity would prove useful in chiral natural product synthesis.

1,4-Addition of Grignard reagents to (1) catalysed by Cu¹ proceeded smoothly to give the corresponding *trans*-adduct (2) in high yield as the exclusive product, which was then treated with CuCl₂ to eliminate the SiMe₃ group. Under almost all the oxidative reaction conditions reported by Fleming *et al.* in similar systems,³ attempted elimination of the SiMe₃ group from (2a) (R = Ph) resulted in disappointing

results (some are shown in Table 1, entries 1—3). The yields could not be increased by optimization of reaction conditions. After many trials, treatment of (2a) (R = Ph) with anhydrous CuCl₂ (3 equiv.) in commercial grade dimethylformamide

Table 1. Synthesis of 5-substituted cyclohex-2-enones (3).

Entry	R	Yield (2), %	Methoda	Yield (3), ^b %		E.e., %
1	Ph	90	Ac	(3a)	26	
2	Ph		\mathbf{B}^{d}	. ,	45s	
3	Ph		Ce		63 ^g	
4	Ph		\mathbf{D}^{f}		84	
5	$p-MeC_6H_4$	92	D	(3b)	91	_
6	p-MeOC ₆ H ₄	92	D	(3 c)	85	
7	But	95	D	(3d)	84	_
8	PhCH ₂ CH ₂	92	D	(3e)	82	
9h	Ph	94	D	(-)-(3a)	82	98 (R)
10h	$p-MeC_6H_4$	96	D	(-)-(3b)	83	98 (R)
11 ^h	But	86	D	(–)-(3 d)	92	96 (R)

^a Method in the second step (2) \rightarrow (3). ^b Based on (2). ^c CuBr₂ (2 equiv.), CHCl₃-AcOEt, reflux 1 h. ^d PhNMe₃Br₃, tetrahydrofuran (THF), 0°C, 1 h. ^c C₅H₅NHBr₃, THF, 0°C, 10 min. ^f CuCl₂ (3 equiv.), dimethylformamide (DMF), 60°C, 25–90 min. ^g Contaminated with a small amount of by-product. ^h Optically pure (*R*)-(-)-(1) was used.

(DMF) at 60 °C for 40 min was found to be effective for this conversion (entry 4). Starting from (\pm) -(1), five racemic enones (**3a**—e) were synthesized in 75—84% overall yields (entries 4–8).

Highly optically active compounds (*R*)-(**3**) [96—98% enantiomeric excess (e.e.)] were also synthesized starting from (*R*)-(-)-(**1**). Optically pure samples of (-)-(**3a**) and (-)-(**3b**) were obtained by recrystallization of the products and the specific rotation values, $[\alpha]_D^{23} - 46.4^\circ$ (*c* 5.00, CHCl₃) and $[\alpha]_D^{20} - 44.5^\circ$ (*c* 1.70, CHCl₃), were used to calculate the e.e. values.[‡] In the case of (-)-(**3d**), the enone was converted into 3-t-butylcyclohexanone, $[\alpha]_D^{22} + 23.1^\circ$ (*c* 2.80, CHCl₃), by hydrogenation, and the e.e. value was calculated based on the value $[\alpha]_D + 24.1^\circ.^4$

† In the case of (3a), the optically pure samples, (-)- and (+)-(3a), were also obtained by the direct resolution of (\pm) -(3a), *i.e.* recrystallization of (\pm) -(3a) from pentane gave a racemic mixture (conglomerate) which was isolated by mechanical separation.

In conclusion, this method provides the first straightforward route to synthesize highly optically active 5-substituted cyclohex-2-enones from a common starting material.

Received, 13th October 1987; Com. 1479

References

- 1 M. Asaoka, K. Shima, and H. Takei, *Tetrahedron Lett.*, 1987, 28, 5669.
- J. W. ApSimon, C. H. Heathcock, J. W. Hooper, D. Taub, and A. F. Thomas, in 'The Total Synthesis of Natural Products,' ed. J. W. ApSimon, Wiley, New York, 1973, vol. 2; S. L. Graham, C. H. Heathcock, M. C. Pirrung, F. Plavac, and C. T. White, *ibid.*, 1983, vol. 5; J. d'Angelo, *Tetrahedron*, 1976, **32**, 2979.
- 3 I. Fleming and J. Goldhill, J. Chem. Soc., Chem. Commun., 1978, 176; D. J. Ager and I. Fleming, *ibid.*, p. 177; I. Fleming and A. Percival, *ibid.*, p. 178; I. Fleming and J. Goldhill, J. Chem. Soc., Perkin Trans. 1, 1980, 1943; I. Fleming and D. A. Perry, Tetrahedron, 1981, **37**, 4027.
- 4 D. A. Lifhtner, T. D. Bouman, J. K. Gawroski, K. Gawroski, J. L. Chappuis, B. V. Crist, and A. E. Hansen, J. Am. Chem. Soc., 1981, 103, 5314.