The Direct Electrochemical Synthesis of Metal-Diphenylphosphido Complexes, and the Crystal Structure of Cu₄(u-PPh₂)₄(Ph₂PCH₂PPh₂)₂

Theodore A. Annan, Rajesh Kumar, and Dennis G. Tuck

Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4

The electrochemical oxidation of metal anodes in an acetonitrile solution of Ph₂PH yields M(PPh₂) (M = Cu, Ag, Au) or M(PPh₂)₂ (M = Co, Zn, Cd); with a solution of Ph₂PH and bis(diphenylphosphino)methane (dppm), this method gives $Cu_{4}(PPh_{2})_{4}(dppm)_{2}$ whose structure is found to be very similar to that of $Cu_{4}(SC_{5}H_{11})_{4}(dppm)_{2}$.

The electrochemical oxidation of a sacrificial anode in a complexes, depending on the composition of the electrolyte non-aqueous solution of thiol has been shown to be a phase. We now report the use of similar techniques t phase. We now report the use of similar techniques to prepare convenient one-step room-temperature route to the thiolato diphenylphosphido derivatives of both main group and complexes of metals such as zinc, cadmium, mercury,^{1,2} tin,³ transition metal elements. The synthetic routes reported in the lead,³ compounds include lead,³ compounds include lead,³ copper,^{4,5} silver,⁵ gold,⁴ cobalt,⁶ and nickel.⁶ The literature for the preparation of M(PR₂), compounds include products are the metal thiolates, their adducts, or anionic cage alkane elimination bet alkane elimination between MR and $HPR₂$,⁷ the elimination

Figure 1. The molecular structure of $Cu_4(\mu\text{-}PPh_2)_4(\text{dppm})_2$; ORTEP diagram, 30% probability ellipsoids. The numbering system **is** shown.

of Me₃SiCl between NiCl₂ and Me₃SiPPh₂,⁸ the reaction of MR with $Ph_2PC_2H_4PPh_2$,⁹ and transmetallation using $R_2PLi.$ 10.11 We believe that the direct electrochemical preparation has the advantages of simplicity and high yield compared with the methods described previously.

When a metal anode $(e.g. Zn)$ was oxidized in a solution of $Ph₂PH$ (2 ml, 2.14 g, 50 ml MeCN), using the cell Zn MeCN + Ph2PH/Pt, an applied voltage of 35 **V** produced a current of 20 mA. A white precipitate formed immediately at the anode and hydrogen was evolved at the cathode. The precipitate was collected, washed (MeCN), dried *in vucuo,* and identified by elemental analysis and i.r. spectroscopy as $\text{Zn}(PPh_2)_2$, which is insoluble in all common organic solvents. All experimental work was carried out under dry nitrogen. The yield of $\text{Zn}(\text{PPh}_2)_2$ was $>90\%$, based on metal dissolved (0.215 g) after 8 h; the electrochemical efficiency, E_F , was 0.55 mol F⁻¹. Similar experiments with Cd and Co yielded $M(PPh₂)₂$, while with Cu, Ag, and Au the products were the insoluble $MPPh₂$ $(E_F 1.00 \text{ mol } F^{-1})$. Yields were >90% in each case.

The solubilities of these $Ph₂P$ derivatives are similar to those of the corresponding thiolato compounds, implying that the two ligands have similar co-ordination and/or bridging properties. This correspondence has been shown to hold in the copper(1) adduct CuPPh₂.0.5 dppm [dppm = bis(diphenylphosphino)methane]. Electrochemical oxidation of copper in a solution of Ph₂PH (2 ml, 2.14 g) and dppm (2 g) in a mixture of MeCN (45 ml) and toluene (25 ml) for 8 h (15 V, 20 mA) caused 0.37 g Cu to dissolve; E_F 0.98 mol F⁻¹. After electrolysis, the yellow-orange solution was allowed to stand overnight with a slow stream of N_2 bubbling through the mixture; a large quantity of yellow-orange crystals was then isolated as before. This material analysed as $CuPPh₂ \cdot 0.5$ dppm.0.5 PhMe, but crystals grown from hot toluene-MeCN $(50: 20)$ for X-ray crystallography were found to have the composition CuPPh₂.0.5 (dppm).MeCN. The crystal struc-

Figure 2. The core Cu_4P_4 ring with its capping $Cu_2PCP'_2$ rings.

ture analysis $3,12$ [†] identified the structure of the adduct (Figure 1) as that of the tetrameric $Cu_4(\mu-PPh_2)_4$ (dppm)₂ (1) with four molecules of MeCN in the unit cell but apparently playing no role in determining the stereochemistry of the adduct. The adduct consists essentially of a $Cu₄P₄$ ring involving the $Ph₂P$ ligands, capped by two six-membered boat-form $Cu₂PCP'_{2}$ rings with dppm bridging two copper atoms. All the phosphorus atoms have essentially tetrahedral co-ordination. Figure 2 shows the skeleton of the three fused rings. This structure is almost identical to that found⁵ for $Cu_4(\mu$ -SC₅H₁₁)₄(dppm)₂ (2) which also contains an eight-membered $Cu₄S₄$ ring and two capping $Cu₂SCP₂$ rings in the boat form. Table 1 summarizes some of the important features of these two unusual molecules. One significant difference is that the stereochemistry at phosphorus in the $Cu₄P₄$ ring is tetrahedral, while sulphur is almost trigonal in $Cu₄S₄$, but otherwise the ring dimensions and angles are remarkably similar. The $Cu₄S₄$ ring is apparently unique⁴ amongst the rich variety of $Cu(I)$ -thiolate cage structures presently known, $13,14$ and it seems reasonable to

 $\frac{1}{2}$ Crystal data for **(1):** $Cu_4(\mu\text{-PPh}_2)_4(\text{dppm})_2\text{-}4\text{MeCN}, M = 1928,$ space group $\overline{P1}$, $a = 14.719(4)$, $b = 13.649(5)$, $c = 17.112(5)$ Å, $\alpha =$ 112.4(3), $\beta = 106.2(2)$, $\gamma = 115.4(2)$ °, $Z = 1$, $D_c = 1.26$, $D_x = 1.28$ g cm⁻³, Mo- K_{α} radiation, data collected at 21 °C, $R = 0.0632$ for 3622 reflections. The structure was refined in two blocks during the least-squares analysis, with Cu, P, and the $CH₂$ of dppm in one block, and the carbon atoms of all phenyl groups in the second; 351 variables. Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. **See** Notice to Authors, **Issue** No. 1.

Table 1. Comparison of important steric parameters in $Cu₄(\mu$ -PPh₂)₄(dppm)₂ (1) and Cu₄(μ -SC₅H₁₁)₄(dppm)₂ (2).^a

suggest from the present results that there may well be a corresponding range of Cu(1)-phosphido ligand structures to be identified.

In addition to the potential use of $M(\text{PR}_2)_n$ compounds in the synthesis of other phosphdo species, these molecules have a chemistry as yet largely unexplored. Thus we find that $M(PPh₂)_n$ compounds react with CS₂ to give $M(S₂CPPh₂)_n$ by insertion into the M-P bond. Another set of related compounds can easily be prepared electrochemically. Oxidation of a zinc anode in a solution of $Ph₂PH$ (1 ml, 1.07 g) and sulphur (0.30 g) in MeCN-toluene $(30:20)$ for 3 h (15 V, 30 mA) caused 0.110 g of metal to dissolve $(E_F \, 0.51 \, \text{mol F}^{-1})$. The white precipitate was collected, washed (MeCN then toluene), and dried *in vacuo.* This material was identified as $Zn(S_2PPh_2)_2$, identical with the compound described by McCleverty *et af.* 15 Similar techniques have given the corresponding Cd^{II}, Ni^{II}, and Co^{II} complexes in yields exceeding 90%.

Received, 18th September 1987; Com. 1368

References

- 1 F. F. Said and D. G. Tuck, *Inorg. Chirn. Acta,* 1982, *59,* 1.
- 2 J. L. Hencher, M. A,, Khan, F. F. Said, and D. G. Tuck,
- 3 **J.** L. Hencher, **M.** A. Khan, F. F. Said, R. Sieler, and D. G. Tuck, *Polyhedron,* 1985,4, 1263. *Inorg. Chern.,* 1982, **21,** 2787.
- 4 R. K. Chadha, R. Kumar, and D. G. Tuck, *Can. J. Chern.,* 1987, *65,* 1336.
- *5* M. A. Khan, R. Kumar, and D. G. Tuck, *Polyhedron,* 1988,7,49.
- 6 R. Kumar, J. Romeiro, and D. G. Tuck, unpublished results.
- 7 R. **J.** Puddephatt and P. **J.** Thompson, *J. Organornet. Chern..* 1976, **117,** 395.
- 8 E. W. Abel, R. A. N. McLean, and I. H. Saberwal, *J. Chern. Soc. (A),* 1968, 2371.
- 9 G. van Koten and J. G. Noltes, *J. Chem. Soc.*, *Chem. Commun.*, 1973, 452.
- 10 A. M. Arif, **A.** H. Cowley, R. A. Jones, and J. M. Power, *J. Chern. Soc., Chern. Cornrnun.,* 1986, 1446.
- I1 **A.** M. Arif, B. L. Benac, A. H. Cowley, R. Geerts. R. A. Jones, K. B. Kidd, **J.** M. Power, and **S.** T. Schwab, *J. Chern. Soc., Chern. Cornrnun.,* 1986, 1543.
- 12 M. A. Khan, R. **S.** Steevensz, D. G. Tuck, J. G. Noltes, and P. W. R. Corfield, *Inorg. Chern.,* 1980, **19,** 3407.
- 13 I. G. Dance, *Polyhedron,* 1986, *5,* 1037.
- 14 P. J. Blower and J. R. Dilworth, *Coord. Chern. Rev.,* 1987, 76, 121.
- 15 J. A. McCleverty, R. **S.** Z. Kowalski, N. A., Bailey, R. Mulvaney, and D. A. O'Cleirigh, *J. Chem. Soc., Dalton Trans.,* 1983, 627.