Benzene–Naphthalene Copolymer as a Processible Conductive Polymer

Dinesh Chandra Trivedi* and Shankaran Srinivasan

Organic Division, Central Electrochemical Research Institute, Karaikudi-623006, India

The synthesis of a processible benzene–naphthalene copolymer and its potential use as battery electrode material are reported.

A number of aromatic compounds have been employed recently to produce conducting or semi-conducting polymers;¹ however, only a few, such as poly-*p*-phenylene sulphide, are processible.²

We report here the preparation of a benzene–naphthalene copolymer by the popular Kovacic method,³ using anhydrous AlCl₃ as the Lewis-acid catalyst and anhydrous CuCl₂ as the oxidizing agent. Mechanical stirring of a heterogeneous mixture of naphthalene (0.2 mol), benzene (0.8 mol), anhydrous AlCl₃ (0.5 mol), and anhydrous CuCl₂ (0.5 mol) on dropwise addition of 1 ml of water at a constant temperature of 35 ± 0.1 °C for two hours yielded a brown-black polymer (70%) which was soluble in organic solvents such as benzene, chloroform, toluene, carbon tetrachloride, *etc.* A decrease in solubility was observed with increasing polarity of the solvent.

The polymer displays a glass transition temperature at $65 \,^{\circ}$ C. Films of the polymer could be cast on glass slides and various other substrates, which, on drying could be peeled off.

The polymer shows intense u.v.-visible absorption $[\lambda_{max.}$ (C₆H₆) 280 nm (log ε 4.50) and 316.5 (log ε 4.36)]. The i.r. spectrum shows principal bands at 1590, 1480, 1000, 940, 810, 780, 740, and 700 cm⁻¹. The absence of bands at 710 and 690 cm⁻¹ prompts us to suggest that the end groups of the polymer chain may be naphthyl rings rather than phenyl. The virgin polymer shows a very low conductivity (10⁻¹⁰ ohm⁻¹ cm⁻¹). However doping with bromine leads to an increase in conductivity by almost 4 orders of magnitude to 10^{-5} — 10^{-6} ohm⁻¹ cm⁻¹. Similarly, experiments on electrochemical doping in acetonitrile containing anhydrous NaClO₄ were carried out on films cast on glass slides; the conductivity was found to increase to 10^{-2} ohm⁻¹ cm⁻¹.

Preliminary studies indicate that the polymer has potential for use as electrode material in secondary batteries, as an electrostatic dissipation agent, and as an effective electromagnetic interference shielding agent.

Help and encouragement received from Prof. K. I. Vasu, Director, CECRI, are gratefully acknowledged.

Received, 13th October 1987; Com. 1485

References

- 1 W. J. Feast, 'Handbook of Conducting Polymers,' vol. 1, ed. Terje A. Skotheim, Marcel Dekker, New York, 1986; A. F. Diaz and J. Bargon, *ibid.*, ch. 3, p. 81; D. C. Trivedi, *J. Electrochem. Soc. India*, 1986, **35**, 243.
- 2 J. R. Rabolt, T. C. Clarke, K. K. Kanazawa, J. R. Reynolde, and G. B. Street, J. Chem. Soc., Chem. Commun., 1980, 349; R. R. Chance, L. W. Shacklette, G. G. Miller, D. M. Ivory, R. L. Elsenbaumer, and R. H. Baughman, *ibid.*, 1980, 348.
- 3 P. Kovacic and A. Kyriakis, J. Am. Chem. Soc., 1963, 85, 454; P. Kovacic and F. W. Koch, J. Org. Chem., 1965, 30, 3176; Chin. Fen Hsing, M. B. Jones, and P. Kovacic, J. Poly. Sci., Polym., Chem. Ed., 1981, 19, 973.