Diastereo- and Enantio-selective Synthesis of Dihydro- and Tetra hydro-pyrimidines. A New Strategy for the Asymmetric Synthesis of P-Amino Ketones and y-Amino Alcohols

Josè Barluenga,*^a Bernardo Olano,^a Santos Fustero,^a M_ª de la Concepciòn Foces-Foces,^b and **Felix Hernandez Canob**

^a*Departamento de Quimica Organometalica, Facultad de Quimica, Universidad de Oviedo, 3307 I Oviedo, Spain* ^b*Unidad estructural de Cristalografia, lnstituto de Quimica Fisica "Rocasolano,* " *C.S.I.C. Serrano I 19, 28006 Madrid, Spain*

Chiral 1,2-dihydro- **(3)** and 1,2,3,6-tetrahydro-pyrimidines **(4)** have been synthesized by reaction of 3-aminoalk-2-enimines **(1)** with chiral aldehydes, the structure of **(4)** being confirmed by an X-ray crystal structure determination of a reduction product; a new strategy for the asymmetric synthesis of 6-amino ketones **(2)** and y-amino alcohols **(6)** with two or three chiral centres is described.

There has been much recent interest in the enantioselective synthesis of β -hydroxy carbonyl compounds, the aldol reaction using chiral enolates being employed in most instances. In sharp contrast, methods leading to the analogous chiral N -unsubstituted- β -amino carbonyl compounds are, as far as we are aware, hitherto unknown. **As** a part of our investigation on the reactivity of the easily prepared 3-aminoalk-2 enimines (1) ,² we have recently reported the synthesis of β -amino ketones, γ -diamines, γ -amino alcohols, and γ -diols, by reduction of **(1).3** We have now focused our attention on their enantioselective preparation, and we report here the asymmetric synthesis of β -amino ketones (2) and γ -amino alcohols **(6)** with two or three chiral centres.

In our strategy the chiral 1,2-dihydropyrimidines **(3)4** are prepared for the first time from **(1)** and a chiral auxiliary; compounds **(3)** are then stereoselectively reduced to give the tetrahydropyrimidines **(4).** Finally, the heterocycle is cleaved by hydrolysis to liberate the chiral auxiliary and to yield the

Scheme **1**

target compound **(2)** (Scheme 1). **As** chiral auxiliary we have chosen the α -alkoxy aldehyde (S) - $(-)$ -2-benzyloxypropanal, $(-)$ -(5a),⁵ and have also used its racemate, (\pm) -(5a), and (\pm) -2-phenylpropanal, (\pm) -(5b), owing to their ready availability (see Scheme 2). Reaction at room temperature of **(1)** with the aldehydes (5) and $ZnCl_2$ [(1) : (5) : $ZnCl_2$, 1 : 1.1 : 1] in tetrahydrofuran (THF) for several hours afforded, after basic hydrolysis, a mixture of two diastereoisomeric dihydropyrimidines (3a) and (3^β) [diastereomeric excess (d.e.) 88-97%]t in excellent yields (>91%) (Scheme 2). **A** single recrystallization gave (3α) free of any epimeric material. \ddagger The

i- Diastereoisomeric ratio (d.r.) (IH n.m.r., 250 MHz) for compounds (3): $(3a\alpha/\beta)$ 94/6; $(3b\alpha/\beta)$ 95/5; $(3c\alpha/\beta)$ >98/2; $(3d\alpha/\beta)$ >98/2; $(3e\alpha/\beta)$ 94/6; $(3f\alpha/\beta)$ >98/2; $(3g\alpha/\beta)$ 97/3. The diastereoisomeric ratio $(3\alpha/\beta)$ depended on the Lewis acid; other Lewis acids $(AICI₃, BF₃.Et₂O$, TiCl₄, or $MgBr_2$) gave less satisfactory stereoselectivities (d.e. $26 - 62\%$).

 \ddagger Physical data for compounds (3 α) and (4 α): (\pm)-(2SR, 7RS)-(3a α), m.p. 211-213 °C; (\pm)-(2SR,7RS)-(3ba), m.p. 196-198 °C; (\pm)- $(2SR,7RS)$ -(3ca), m.p. 136—138 °C; (-)-(2S,7S)-(3ca), m.p. 136—138 °C, $[\alpha]_D^{23}$ –734.7° (c 1.1, CHCl₃); (-)-(2S,7S)-(3da), m.p. 70-72 °C, $[\alpha]_D^{23}$ -721.2° (c 1.1, CHCl₃); (-)-(2S,7S)-(3fa), m.p. 137—140 °C, $[\alpha]_D^{23}$ –533.0° *(c* 1.0, CHCl₃); (3e α) and (3g α), oils, not purified. *(+)-(2RS,6SR,7SR)-(4aa),* m.p. 165-167 "C; (&)- $(2RS, 6SR, 7SR)$ -(4b α), m.p. 148—150 °C; (\pm)-(2RS,6SR,7SR)-(4c α), m.p. 114-116 °C; (-)-(2R,6S,7S)-(4ca), m.p. 114-116 °C, $[\alpha]_D^{23}$ -400.6° (c 1.1, CHCI₃); (-)-(2R,6S,7S)-(4da), m.p. 148--151 °C, $[\alpha]_{D}^{23}$ -422.5° (c 1.2, CHCl₃); (-)-(2R,6S,7S)-(4ea), m.p. 160—162 °C, $[\alpha]_D^{23}$ -527.8° (c 1.0, CHCl₃); (-)-(2R,6S,7S)-(4fa), 160—162 °C, α ₁₀²³ –527.8° (c 1.0
oil, α ₁₀²³ –154.3° (c 1.1, CHCl₃).

Spectral data for compounds (2) — (4) , and (6) are in agreement with the proposed structures: *e.g.* $(-)$ - $(3c\alpha)$: ¹H n.m.r. (CDCl₃) δ 1.55 (d, 3H, J 7.5 Hz), 1.95 (s, 3H), 2.35 **(s,** 3H), 3.90 (m, lH), 4.50 (d, 1H, *J* 12.0 Hz), 4.80 (d, lH, J 12.0 Hz), 5.60 (d, 1H. *J 8.5* Hz), and 6.60-7.60 (m, 19H); (-)-(4ca): ¹H n.m.r. (CDCl₃) δ 1.50 (d, 3H, *J6.0* Hz), 1.55 **(s,** 3H), 1.90 (lH, brs, NH), 2.35 **(s,** 3H), 4.20 (m, lH), 4.30 **(s,** lH), 4.50 (d, 1H,J9.0 Hz), 4.75 (d, 1H,J 10.5 Hz), 4.85 (d, 1H, J 10.5 Hz), and $6.90-7.60$ (m, $19H$); (+)-(2c α): ¹H n.m.r. (CDCI,) **8** 0.94 (d, 3H, *J* 7.2 Hz), 1.64 (br.s, 2H), 2.35 (s, 3H), 3.72 (m, lH,J7.2and9.2Hz),4.28(d, **lH,J9.2Hz),and7.18-8.00(m,** 9H); (-)-(6c α): ¹H n.m.r. (CDCl₃) δ 0.75 (d, 3H, J 7.5 Hz), 2.08 (m, lH), 2.33 (s, 3H), 3.16 (br.s, lH), 4.05 (d, lH, *J* 3.0 Hz), and 7.14-7.36 **(m,** 9H).

 $a;R^1 = Me, R^2 = R^3 = Ph$ ${\bf b}; {\bf R}^1 = {\bf M}e$, ${\bf R}^2 = p{\bf M}eC_6{\bf H}_4$, ${\bf R}^3 = {\bf P}h$ $c;R^1 = Me$, $R^2 = p-MeC_6H_4$, $R^3 = OCH_2Ph$ d ; $R¹$ = Me, $R²$ = Ph, $R³$ = OCH₂Ph $e; R^1 = Me$, $R^2 = cycleo - C_6H_{11}$, $R^3 = OCH_2Ph$ $f_1R_1 = CH_2Ph$, $R_2 = p-MeC_6H_4$, $R_3 = OCH_2Ph$ g ; $R¹ = CH₂=CHCH₂$, $R² = Ph$, $R³ = OCH₂Ph$

Scheme 2. *Reagents and conditions: i, ZnCl₂, THF, 25* °C; ii, NaBH₄, MeOH, 25° C, then H₂O/OH⁻

assignment of the relative stereochemistry at C-2 and C-7 in the products (3) was based on ¹H n.m.r. data \ddagger and confirmed by X -ray crystallographic analysis of the reduction product $(-)$ - $(4ca)$ (see later).

Reduction of (3α) with NaBH₄/MeOH at 25 °C led, after basic hydrolysis, to single stereoisomers of the tetrahydropyrimidines (4α) (d.e. $>99\%$)^{\ddagger} in nearly quantitative yields (Scheme 2), 1H n.m.r. spectra of the crude products showing no contamination with the C-6 epimer or other reduction products. The 1H and 13C n.m.r. spectra and nuclear Overhauser enhancement (n.0.e.) experiments for compounds (4α) did not reveal clearly the relative stereochemistry at C-2 and C-6, and so the X -ray crystal structure of the chiral compound $(-)$ - $(4c\alpha)$ was determined (Figure 1). § C-2 and C-6 are in the anti-configuration, and the absolute configuration is $(-)$ - $(2R, 6S, 7S)$.

The potential utility of this methodology is demonstrated in the enantioselective preparation of the β -amino ketones (2) and the pharmacological and synthetically important chiral y-amino alcohols **(6)** (Scheme 3).6 Thus, acidic hydrolysis of

[§] *Crystal data:* $C_{33}H_{34}N_2O$, $M_r = 474.64$, yellow hexagonal prisms, space group $P6_1$, $a = 10.3474(1)$, $c = 44.5122(24)$ Å, $U = 4127.4(2)$, $\overline{Z} = 6$, $D_c = 1.146$ g cm⁻³; $F(000) = 1524$, $\mu = 4.98$ cm⁻¹. 2341 Independent reflexions were measured with graphite-monochromated Cu-K_a radiation on a Philips PW1100 diffractometer (ω -20 scans). 1960 Reflexions with $I > 3\sigma(I)$ were used in the solution (MULTAN) and refinement (least squares) to $R = 0.040$, $R_w = 0.048$. Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1. Since the absolute configuration at C-7 is known (S) , the absolute configuration at C-2 *(R)* and C-6 (S) **is** readily deduced.

Figure 1. Molecular conformation of $(-)$ - $(4c\alpha)$ showing the atomic labelling. Selected torsion angles (°): $O(8)-C(7)-C(2)-N(3)+60.7(4)$, $O(8)$ -C(7)-C(2)-N(1) -174.8(3), $O(8)$ -C(7)-C(2)-H(2) -57(3); C(31)-C(30)-C(6)-C(5)-60.5(5), C(31)-C(30)-C(6)-N(1) +66.9(5),
C(31)-C(30)-C(6)-H(6) - 176(3); H(16a)-C(16)-C(7)-O(8) $C(31)$ - $C(30)$ - $C(6)$ - $H(6)$ -176(3); $H(16a)$ - $C(16)$ - $C(7)$ - $O(8)$
+179(4), $H(16a)$ - $C(16)$ - $C(7)$ - $C(2)$ +60(4), $H(16a)$ - $C(16)$ - $C(7)$ -H(7) $-61(5)$; C(2)-N(1)-C(6)-H(6) +97(3), C(2)-N(1)-C(6)-C(5) $-22.4(5)$; C(4)-N(3)-C(2)-H(2) $-172(3)$, C(4)-N(3)-C(2)-N(1) $-54.5(4)$. Figure 1. Molecular conformation of $(-)$ - $(4 \text{c} \alpha)$ showing the atomic
abelling. Selected torsion angles (°): O(8)-C(7)-C(2)-N(3) +60.7(4),
O(8)-C(7)-C(2)-N(1) -174.8(3), O(8)-C(7)-C(2)-H(2) -57(3);
C(31)-C(30)-C(6)-H(6

Scheme 3. *Reagents and conditions:* i, 1 M H_2SO_4 , 1 h, 40°C, $-(-)$ -(5a), $-PhNH_2$; ii, LiAlH₄, Et₂O, 25 °C.

 $(-)$ -(4c α), followed by removal of the chiral auxiliary $(-)$ -(5a), led to a diastereoisomeric mixture of $(2S,3R)$ - $(2c\alpha)$ and (2R,3R)-(2cp) (95% yield) in **a** ratio of 94 : 6 (Scheme 3). The chirality of the created stereogenic centre, C-6, in (4α) is not destroyed or modified, as expected, during the acid hydrolysis, whereas partial racemisation was observed during hydrolysis of $(-)$ -(5a). The major diastereoisomer $(+)$ - $(2ca)$ was readily separated by stirring the mixture with n-hexane, filtration, and recrystallization (73% yield of isolated product); (+)-(2ca), m.p. 64-66°C, $[\alpha]_D^{23}$ +108.6° (c 0.7, $CHCl₃$). The ¹H n.m.r. spectrum of the methoxy(trifluoromethyl)phenylacetyl derivative⁷ showed the isomer $(+)$ - $(2S,3R)$ - $(2c\alpha)$ to be >99% enantiomerically pure.

Finally, reduction of $(+)$ - $(2c\alpha)$ with LiAlH₄/Et₂O at 25 °C led (92% yield) to the corresponding diastereoisomeric γ -amino-alcohols $(1R, 2S, 3R)$ -(6c α) and $(1S, 2S, 3R)$ -(6c α') (d.e. 95%) (Scheme 3). $(-)$ -(6c α) was easily separated and purified by recrystallization (n-hexane) *(75%* yield of isolated product); (-)-($6c\alpha$), m.p. 104-106 °C (lit.^{3b} 106-107 °C, $[\alpha]_{D^{23}} -34.4^{\circ}$ (c 0.6, CHCl₃).

In summary, we have provided an efficient and simple enantioselective synthesis of β -amino ketones and y-amino alcohols of the types (2) and (6) , and also report here the first examples of chiral 1,2-dihydro- and 1,2,3,6-tetrahydro-pyrimidines.

We thank Professor Arturo San Feliciano, Universidad de Salamanca, for ¹H n.m.r. and n.O.e. measurements and helpful discussions.

Received, *2nd* October 1987; *Corn.* 1437

References

- For a recent review, see: M. Braun, *Angew. Chem., Int. Ed. Engl.,* 1987, **26,** 24.
- H. Hoberg and J. Barluenga, *Synthesis,* 1970, 142. For the reactivity of these systems, see: J. Barluenga, M. Tomás, A. Ballesteros, V. Gotor, C. Kruger, and Y.-H. Tsay, *Angew. Chem., Int. Ed. Engl.,* 1986, 25, 181, and references cited therein.
- (a) J. Barluenga, B. Olano, and **S.** Fustero, *J. Org. Chem.,* 1983, 48, 2255; (b) J. Barluenga, B. Olano, and **S.** Fustero, *ibid.,* 1985, 50,4052; (c) J. Barluenga, H. Cuervo, B. Olano, S. Fustero, and V. Gotor, *Synthesis,* 1986, 469; (d) J. Barluenga, J. Garcia Resa. B. Olano, and **S.** Fustero, *J. Org. Chem.,* 1987, **52,** 1425.
- (a) J. Barluenga, M. Tomas, **S.** Fustero, and V. Gotor, *Synthesis,* 1979, 346; (b) H. Cho, K. Shima, M. Hayashimatsu, Y. Ohnaka, **A.** Mizuno, and Y. Takeuchi, *J. Org. Chem.,* 1985, **50,** 4227; (c) **A.** L. Weis, F. Frolow, and R. Vishkautsan, *ibid.,* 1986, **51,** 4623, and references cited therein.
- (a) D. C. Baker and L. D. Hawkins, J. *Org. Chem.,* 1982,47,2179; $\mathbf{5}$ (b) P. G. M. Wuts and S. **S.** Bigelow, *ibid.,* 1983, 48, 3489.
- 6 For recent stereoselective synthesis of γ -amino alcohols, see ref. 3b and also (a) M. Tramontini, *Synthesis,* 1982, 605; (b) Y. Matsumura, **J.** Fujiwara, K. Maruoka, and H. Yamamoto, *1. Am. Chem. Soc.,* 1983, **105,** 6312.
- The enantiomeric excess was determined by comparison with the previously prepared racemic (\pm) -(2SR,3RS)-(2ca) (see ref. 3b); J. A. Dale, D. Dull, and H. **S.** Mosher, J. *Org. Chem.,* 1969, 34, 2543.