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Yeast reduction of the keto-proline (5) affords the hydroxyproline derivative (6) (diastereoisomeric excess > 99% cis; 
enantiomeric excess, e.e., 80%); subsequent hydrolysis and crystallisation gives (+)-cis-(2R,3S)-3-hydroxyproline (7) 
(93% e.e.) which has been homologated to  the bicyclic lactones (10) and ( l l ) ,  precursors of (-)-retronecine, 
(+ )-platynecine, (-)-croalbinecine and related pyrrolizidines. 

Many pyrrolizidine alkaloids are complex dilactones which 
consist of &,to-aliphatic dicarboxylic acids esterified by a 
variety of substituted pyrrolizidines, the so-called necine 
bases, exemplified by (+)-retronecine (1).1 The necine bases 
themselves have attracted considerable synthetic interest 
largely because of the wide variety of biological activity2 
associated with this group of alkaloids. Retronecine ( 1 )  itself 
was first synthesised some 25 years ago by Geissman and 
Waiss3 who employed the bicyclic lactone [(&)-(2)] as a key 
intermediate; more recently this compound has been prepared 
in an optically pure state by relatively lengthy sequences 
starting from trans-4-hydroxy-~-proline,A D-erythrose,' or 
L-malic acid,h and has also been converted into other examples 
of the necine bases such as (-)-platynecine (3) and (+)- 
croalbinecine (4).7 We reasoned that a somewhat more 
convenient precursor to lactone (2), now often referred to as 
the Geissman-Waiss lactone, would be cis-3-hydroxyproline 
which should be obtainable in optically active form by 
asymmetric reduction of the racemic ketoproline ( 5 ) ,  which is 
available in quantity by various forms of Dieckmann cyclisa- 
tion.8 After a number of trials, we found that yeast reduction 
(dried Baker's yeast. sucrose, water, 3OoC, 24 h)') of the 
keto-proline (5) afforded a 3-hydroxyproline derivative in 
75% isolated yield, with [.ID +18.2" (c 1.45, CH2C12). The 
product was a single diastereoisomer according to 1H and 13C 
n.m.r. spectra and showed a coupling constant of 4 Hz 
between the 2- and 3-protons, indicating"' that it was the 
cis-isomer (6) or the enantiomer thereof. N.m.r. spectra of a 
Mosher ester' 1 derived from hydroxy-proline (6) revealed an 
enantiomeric enrichment of 80%. The absolute configuration 
of the major yeast reduction product was found to be (2R,3S) 
[viz. (6)] by complete hydrolysis [20% CF3CO2H-CH1Cl2, 
2OoC, 0.5 h followed by KOH-MeOH-H20, 20'C, 16 h and 
ion-exchange chromatography (Dowex 50 W)] which gave a 
sample of 3-hydroxyproline (7),  m.p. 240-255 "C (decomp.) 
[ l i t . ' 2  m.p. 245-255°C (decomp.)], [.ID + 72.44" (c 1.0, 
H 2 0 )  in 77% overall yield. One crystallisation from water 

gave material with [&ID +85.2" (c 1.25, H20) ;  this established 
the cis-(2S,3R) configuration (7) as the enantiomeric cis- 
(2R,3S)-3-hydroxy-~-proline has [.ID -91.5 * 1.6" (c 0.61, 
H20)12 while the corresponding trans-(2S,3S)-3-hydroxy-~- 
proline is reported12 to have m.p. 228-235°C (decomp.) and 
[&ID -22.8' (c 1.0, H20).  Thus, our crystallised sample of 
3-hydroxyproline (7) had an enantiomeric enrichment of ca. 

Subsequent homologation of the initial yeast reduction 
product (6) to the Geissman-Waiss lactone [cf. (2)] proved to 
be relatively straightforward (Scheme 1). Base hydrolysis 
provided the corresponding hydroxy-acid (Sa), m.p. 
101--103"C, [.ID +55.5" (c 1.39, CH2C12) which was then 

93%. 
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Scheme 1. Reagents and conditions: i, KOH, MeOH, H 2 0 ,  20"C, 16 h 
(86%); ii, Ac,O, pyridine, 20"C, 2 h (85%); iii, (a) (COC1)2, cat. 
dimethylformamide, pyridine, Et,O, 0-20 "C, 1 h, (b) CH2N2, Et,O, 
(c) cat. PhC02Ag, Et,N, MeOH, 2 0 T ,  1 h (66%); iv, K,CO,, 
MeOH, H,O, 20 "C, 16 h; v, toluene-p-sulphonic acid, CH,Cl,; vi, 3 M 
HCl in EtOAc, 20"C, 2 h. 

Boc = t-butoxycarbonyl 

protected as the corresponding acetate (8b), m.p. 
119-121 "C, [ a ] D  -6.2" (c 0.78, CH2Cl,). Arndt-Eistert 
homologation then provided the homologous ester (9), [a], 
+27.0' (c 1.52, CH2C12) in 66% isolated yield which upon base 
hydrolysis followed by brief treatment with acid gave the 
N-protected bicyclic lactone ( lo) ,  m.p. 106-107 'c, [&ID 
+96.0' (c 0.43, CH2C1,) in 90% yield. Alternatively, final 
acidification using 3 M HCl led to the hydrochloride (11) which 
showed m.p. 182-184°C and [a],, -42.9' (c 0.21, MeOH) 
[lit. m.p. 182--184"C, [ a ] D  +45.6" (c 0.83, MeOH) for the 
(1 R,5R) enantiomer (2)] .5 

Overall, this route is not only a brief approach to the bicyclic 
lactones (10) and (11), it also represents formal total syntheses 

of the (non-natural) enantiomers (-)-retronecine, (+)-platy- 
necine, and (-)-croalbinecine [cf. ( l ) ,  (3), and (4)];3,7 

furthermore, the yeast reduction step provides probably the 
simplest route to (2R,3S)-3-hydroxyproline (7) (none of the 
four enantiomers of this amino-acid are readily available)12J3 
which should therefore be a useful addition to the chiral pool. 
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