Facile One-pot Transformation of Carboxylic Acid Chlorides into 2-Substituted Allyl Alcohols

José Barluenga,* José M. Concellón, José L. Fernández-Simón, and Miguel Yus

Departamento de Química Organometálica, Facultad de Química, Universidad de Oviedo, 33071 Oviedo, Spain

The reaction of carboxylic acid chlorides (1) with chloromethyl-lithium generated in situ (1:2 molar ratio) in the presence of lithium iodide leads, after hydrolysis, to the corresponding homologated 2-substituted allyl alcohols (2).

Recently we reported the use of *in situ*-generated chloromethyl-lithium¹ for the preparation of terminal and exocyclic olefins,² cyclopropanols,³ and bifunctionalized organic compounds⁴ by reaction with carbonyl compounds and further lithiation. We now report a new methodology for transforming carboxylic acid chlorides into 2-substituted allyl alcohols, using the same carbenoidic precursor.

The successive treatment of several carboxylic acid chlorides (1) with a mixture of chloroiodomethane-lithium bromide (1:2 molar ratio) and then with methyl-lithium containing lithium iodide (1:2 molar ratio, prepared from

methyl iodide and lithium) at -78 °C leads, after warming, evaporation to dryness *in vacuo* (essential), and final hydrolysis, to the corresponding 2-substituted allyl alcohols (2) (Scheme 1, Table 1).

Scheme 1. Reagents and conditions: i, 2 ClCH₂I-LiBr; ii, 2 MeLi-LiI, -78 °C; iii, -78 to 25 °C, then evaporation; iv, NH₄Cl-H₂O.

Table 1. 2-Substituted allyl alcohols (2) from carboxylic acid chlorides (1).^a

R	% Yield ^b	R	% Yieldb
$CH_2 = CMe$	57	$\mathbf{B}\mathbf{u^t}$	45
MeCH=CH ^c	60	Bun	75
CH₂CH₂CH	70	Ph	85
CH ₂ [CH ₂] ₂ CH	70	CH ₂ [CH ₂]₄CH	88

^a All compounds (2) gave satisfactory spectral data (i.r., ¹H and ¹³C n.m.r., and mass spectra). ^b Isolated yield based on the starting carboxylic acid chlorides (1). ^c E or Z.

In the reaction, a stoicheiometric amount of iodine is obtained, the suggested mechanism involving the intermediates (3)—(6). Thus, after the double addition of chloromethyl-lithium to the starting material (1) the intermediate (3) is formed,† which, either in this form or via the corresponding iodinated derivative (4),‡ yields the epichlorhydrin (5);§ in the final chlorine—iodine exchange with lithium iodide‡ intermediate (6)¶ is formed, which by reaction with iodide** suffers opening of the epoxide yielding after hydrolysis the allylic alcohol (2) (Scheme 2).

In a typical reaction, to a stirred solution of chloroiodomethane (11 mmol), the starting carboxylic acid chloride (1) (5

OLi
$$R \xrightarrow{X} \xrightarrow{-X^{-}} R \xrightarrow{I^{-}} R \xrightarrow{I^{-}}$$

mmol) and lithium bromide (11 mmol) in tetrahydrofuran (thf, 20 ml) was added a diethyl ether solution of methyllithium (1 m, 11 mmol, prepared from methyl iodide and lithium) over 15 min at $-78\,^{\circ}\mathrm{C}$ under argon. Stirring was continued for 1 h at the same temperature and then the solution was allowed to warm to room temperature. The reaction mixture was evaporated (0.1 mmHg) at 50 °C (bath temperature). The resulting residue was dissolved in hexane (10 ml) and hydrolysed with a saturated aqueous solution of NH₄Cl, extracted with diethyl ether, washed with a saturated aqueous solution of Na₂S₂O₃, the ethereal layer dried (Na₂SO₄), and evaporated (15 mmHg). The resulting residue was distilled *in vacuo* to afford the allylic alcohol (2).

In conclusion we believe that the methodology described in this communication represents a convenient, rapid, and versatile procedure for the synthesis of allylic alcohols of the type (2).

Received, 10th November 1987; Com. 1649

References

- 1 K. M. Sadhu and D. S. Matteson, Tetrahedron Lett., 1986, 27, 795.
- 2 J. Barluenga, J. L. Fernández-Simón, J. M. Concellón, and M. Yus, J. Chem. Soc., Chem. Commun., 1986, 1665.
- 3 J. Barluenga, J. L. Fernández-Simón, J. M. Concellón, and M. Yus, Synthesis, 1987, 584.
- 4 J. Barluenga, J. L. Fernández-Simón, J. M. Concellón, and M. Yus, J. Chem. Soc., Chem. Commun., 1987, 915.
- 5 P. E. Sonnet and J. E. Oliver, J. Org. Chem., 1976, 41, 3284.

[†] The hydrolysis of the reaction mixture after this step leads to the corresponding dichlorohydrin (see reference 3).

[‡] Lithium iodide is formed either in the initial preparation of methyl-lithium or in the *in situ* formation of chloromethyl-lithium.

[§] In the absence of lithium iodide and for R = Ph, the hydrolysis at this point afforded the compound (5) in 90% yield.

[¶] The treatment of compound (5, R = H) with lithium iodide leads to a mixture of products, (6) and 1,3-di-iodopropan-2-ol (4:1) (by 1H and ^{13}C n.m.r.).

^{**} The iodide-induced β -elimination from 1,2-chloroiodo compounds has been already described (ref. 5).