Preparation and Crystal Structure of $\mathrm{Cu}_{4}\left[\mathrm{PriP}^{2}-\mathrm{CH}_{2}-\mathrm{PPri}_{2}\right] \mathrm{Cl}_{3}(\mathrm{Py})_{2}(\mathrm{Py}=$ pyridine) : A Novel Copper Complex with a Triply Bridging Secondary Phosphido Group $\mu_{3}-$ PRR' $^{\prime}$ [$\mathrm{R}=\mathrm{Pri}^{\mathbf{i}} \mathbf{R}^{\prime}=\mathrm{CH}_{2}-\mathrm{PPri}_{2}$]

David J. Brauer, Peter C. Knüppel, and Othmar Stelzer*
Fachbereich 9, Anorganische Chemie, Bergische Universität-GH Wuppertal, Gauss-strasse 20, D-5600 Wuppertal 1, Germany

The first copper complex $\mathrm{Cu}_{4}\left(\mathrm{PriP}-\mathrm{CH}_{2}-\mathrm{PPri}_{2}\right) \mathrm{Cl}_{3}(\mathrm{Py})_{2}(\mathrm{Py}=$ pyridine) containing a triply bridging secondary phosphido group μ_{3}-PRR' has been synthesized and characterized by X-ray crystallography.

Owing to the close proximity of the phosphorus atoms, phosphidophosphines $\mathrm{R}_{2} \mathrm{P}-\mathrm{CH}_{2}-\mathrm{PR}$ may bridge triangular arrays of three transition metal atoms and thus act as five-electron donors. Thus oxidative addition reactions of tertiary secondary methylene bisphosphines ${ }^{1}$ with excess of enneacarbonyldi-iron afford Fe_{3} clusters of type (A). ${ }^{2}$

Using transition metal halides instead of carbonyl compounds, cleavage of the $\mathrm{P}-\mathrm{Si}$ bond in the silyl derivatives $\mathrm{R}_{2} \mathrm{P}-\mathrm{CH}_{2}-\mathrm{PRSiMe}_{3}{ }^{3}$ [Scheme 1(a)] might offer a route for the anionic introduction of the phosphidophosphine ligands into oligometallic complexes or clusters of type (B). If CuCl is employed in this reaction, peripheral copper co-ordination sites of (B) would be occupied by both chloride and donor ligands such as pyridine (Py).

However, when $\operatorname{Pr}^{i}{ }_{2} \mathrm{P}-\mathrm{CH}_{2}-\mathrm{PPriSiMe}_{3}$ was treated with CuCl and pyridine as shown in Scheme 1(b), instead of (B), a yellow compound of composition $\mathrm{Cu}_{4}\left(\mathrm{Pr}^{\mathrm{i}}-\mathrm{CH}_{2}-\right.$ $\left.\mathrm{PPr}_{2}\right) \mathrm{Cl}_{3}(\mathrm{Py})_{2}$ (1) was obtained in 54% yield. Molecular weight determinations, electrical conductivity measurements,

(A)

(B) $[L=$ pyridine $(P y)]$
and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectra $\left[\delta 18.0\left(\operatorname{Pri}_{2} \mathrm{P}\right),-59.7\right.$ p.p.m. $\left(\operatorname{Pr}{ }^{\mathrm{P}}\right) ;{ }^{2} J_{\mathrm{PP}} 85 \mathrm{~Hz}$ are in agreement with a monomeric, non-ionic structure in solution.

An X-ray crystallographic study \dagger established that the phosphidophosphine ligates each copper atom of (1). The pyridine ligands donate to the $\mathrm{Cu}(2)$ and $\mathrm{Cu}(4)$ atoms, which are bridged by the $\mathrm{Cl}(3)$ atom. In the solid state, (1) exists as an infinite polymer since the $\mathrm{Cu}(1)-\mathrm{Cu}\left(1^{\prime}\right)$ contact is bridged by twofold-related $\mathrm{Cl}(2)$ and $\mathrm{Cl}\left(2^{\prime}\right)$ atoms while the $\mathrm{Cu}(3)$ $\mathrm{Cu}\left(3^{\prime \prime}\right)$ contact is spanned by inversion-related $\mathrm{Cl}(1)$ and $\mathrm{Cl}\left(1^{\prime \prime}\right)$ atoms. A portion of this structure is shown in Figure 1. The ether molecule does not bond to the copper atoms but rather exists as a solvate.

The μ_{3} bridging of the phosphido group is the most

[^0]

Scheme 1

Figure 1. A segment of the polymeric structure of (1) with hydrogen atoms omitted. Selected bond lengths and angles: $P(1)-\mathrm{Cu}(1)$ 2.251(3), $\mathrm{P}(1)-\mathrm{Cu}(2) 2.223(3), \mathrm{P}(1)-\mathrm{Cu}(3) 2.244(2), \mathrm{Cu}(1)-\mathrm{Cl}(2)$
$2.217(3) \mathrm{Cu}(1)-\mathrm{Cl}\left(2^{\prime}\right) 2.473(3), \mathrm{Cu}(2)-\mathrm{Cl}(3) 2.281(3), \mathrm{Cu}(3)-\mathrm{Cl}(1)$ 2.193(3), $\mathrm{Cu}(3)-\mathrm{Cl}\left(1^{\prime \prime}\right) 2.534(3), \mathrm{Cu}(4)-\mathrm{Cl}(3) 2.332(3), \mathrm{Cu}(2)-\mathrm{N}(1)$ $2.010(9), \mathrm{Cu}(4)-\mathrm{N}(2) 2.022(7), \mathrm{Cu}(1)-\mathrm{Cu}(2) 2.535(1), \mathrm{Cu}(2)-\mathrm{Cu}(3)$ $2.541(2) ~ \AA \AA ; \quad \mathrm{Cu}(1)-\mathrm{P}(1)-\mathrm{Cu}(3) \quad 138.3(1), \quad \mathrm{Cu}(1)-\mathrm{Cu}(2)-\mathrm{Cu}(3)$ $111.71(6), \mathrm{P}(1)-\mathrm{Cu}(1)-\mathrm{Cl}(2) 157.8(1), \mathrm{P}(1)-\mathrm{Cu}(1)-\mathrm{Cl}\left(2^{\prime}\right) 106.2(1)$, $\mathrm{P}(1)-\mathrm{Cu}(3)-\mathrm{Cl}(1) 161.2(1), \mathrm{P}(1)-\mathrm{Cu}(3)-\mathrm{Cl}\left(1^{\prime \prime}\right) 105.0(1)^{\circ}$.
remarkable feature of the structure. Reference to the phosphido plane, defined by the atoms $P(1), C(1)$, and $C(4)$, facilitates the description of this interaction. Thus the $P(1)-$ $\mathrm{Cu}(1)$ and $\mathrm{P}(1)-\mathrm{Cu}(3)$ bond distances are inclined by 67.4 and 70.4°, respectively, to this plane and are nearly equal in length [mean $2.248(5) \AA$], while the $\mathrm{P}(1)-\mathrm{Cu}(2)$ bond, which is $0.025(6) \AA$ shorter, is inclined by only 1.5° to the phosphido plane. Furthermore, the $\mathrm{P}(1), \mathrm{Cu}(1), \mathrm{Cu}(2), \mathrm{Cu}(3)$ fragment is planar to within $\pm 0.026 \AA$, and the $\mathrm{Cu}(1)-\mathrm{Cu}(2)$ and $\mathrm{Cu}(2)-\mathrm{Cu}(3)$ distances [mean 2.538(4) \AA] are sufficiently short to suggest bonding interactions. ${ }^{4}$

Such symmetrical μ_{3} bridging by a phosphido group has
previously only been reported for $\left[\mathrm{Li}_{2}\left(\mu_{3}-\mathrm{Bu}^{\mathrm{t}} \mathrm{t}_{2} \mathrm{P}\right)\left(\mu_{2}-\mathrm{Bu}_{2} \mathrm{P}\right)\right.$ $\left.\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)\right]_{2}$, in which each $\mathrm{Li}-\mathrm{Li}$ contact is spanned by two $\mathrm{But}_{2} \mathrm{P}$ species. ${ }^{5}$

The small variation in the $\mathrm{P}(1)-\mathrm{Cu}$ bond lengths in (1) contrasts with the large spread ($\geqslant 0.2 \AA$) in metal-phosphorus distances previously reported for PRR^{\prime}-phosphido groups in ruthenium clusters. ${ }^{6}$

Because only two electron pairs are available for forming the three $\mathrm{P}(1)-\mathrm{Cu}$ bonds in (1), the bridging must be electron deficient. Nevertheless, the $\mathrm{P}(1)-\mathrm{Cu}$ bond lengths are much shorter than those of the electron-precise bridge in $\left[\left(\mathrm{Ph}_{2} \mathrm{P}-\right.\right.$ $\left.\left.\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{PPh}_{2}\right) \mathrm{Cu}\left(\mu_{2}-\mathrm{Ph}_{2} \mathrm{P}\right)\right]_{2}$ (2) [mean 2.36(1) \AA^{7}] which is the only previously reported copper phosphide structure. This apparent discrepancy may reflect the differences in copper co-ordination numbers [three in (1) and four in (2)] and in the basicity of the ligands. Thus the nonbridging $\mathrm{P}-\mathrm{Cu}$ bond lengths in (2) [mean $2.30(1) \AA$] are also more than $0.1 \AA$ longer than the $\mathrm{P}(2)-\mathrm{Cu}(4)$ distance $[2.194(3) \AA]$ in (1), and the latter distance is 0.033 (3) \AA shorter than the analogous interaction in $\left[\mathrm{Cu}\left(\operatorname{Pri}_{2} \mathrm{P}-\mathrm{CH}_{2}-\mathrm{PPri} \mathrm{H}\right) \mathrm{Cl}\right]_{2} .{ }^{8}$

While the $\mathrm{Cu}(2)-\mathrm{Cl}(3)-\mathrm{Cu}(4)$ bridge is fairly symmetrical, the $\mathrm{Cu}-\mathrm{Cl}$ bonds of the $\mathrm{Cu}(1)$ and $\mathrm{Cu}(3)$ atoms are markedly dissimilar with the shorter distances roughly trans to the respective $\mathrm{P}(1)-\mathrm{Cu}$ bonds (Figure 1). This implies a tendency for diagonal hybridization for the $\mathrm{Cu}(1)$ and $\mathrm{Cu}(3)$ atoms and suggests how (1) might depolymerize upon dissolution.

We thank the Deutsche Forschungsgemeinschaft and Fonds der Chemischen Industrie for financial support of this work.

Received, 14th December 1987; Com. 1794

References

1 S. Hietkamp, H. Sommer, and O. Stelzer, Chem. Ber., 1984, 117, 3400.

2 D. J. Brauer, S. Hietkamp, H. Sommer, and O. Stelzer, Angew. Chem., 1984, 96, 696; J. Organomet. Chem., 1985, 281, 187.
3 F. Gol, G. Hasselkuss, P. C. Knüppel, and O. Stelzer, Z. Naturforsch., 1988, 436, 31.

4 P. K. Mehrotra and R. Hoffmann, Inorg. Chem., 1978, 17, 2187.
5 R. A. Jones, A. L. Stuart, and T. C. Wright, J. Am. Chem. Soc., 1983, 105, 7459.
6 J. Lunnies, S. A. MacLaughlin, N. J. Taylor, A. J. Carty, and E. Sappa, Organometallics, 1985, 4, 2066; A. J. Carty, Pure Appl. Chem., 1982, 54, 113.
7 T. Greiser and E. Weiss, Chem. Ber., 1978, 111, 516; G. van Koten, J. G. Noltes, and A. L. Spek, J. Organomet. Chem., 1978, 159, 441.

8 D. J. Brauer, P. C. Knüppel, and O. Stelzer, Chem. Ber., 1987, 120, 81 .

[^0]: \dagger Crystal data for the ether solvate of (1): $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{Cl}_{3} \mathrm{Cu}_{4} \mathrm{~N}_{2} \mathrm{P}_{2}$. $\frac{1}{2} \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}, M=723.98+\frac{1}{2}(74.12)$, monoclinic, space group $C 2 / c, a=$ $18.197(4), b=14.630(3), c=24.926(7) \AA, \beta=107.88(2)^{\circ}, U=6315.3$ $\AA^{3}, Z=8, D_{\mathrm{c}}=1.601 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=3080, \mu\left(\mathrm{Mo}_{\alpha}\right)=3.04$ $\mathrm{mm}^{-1}, \grave{\lambda}=0.71073 \AA .4122$ Unique reflections were collected $(4 \leqslant 2 \theta$ $\leqslant 45^{\circ}$) and corrected for absorption. The crystal structure was solved by direct methods and difference Fourier syntheses. 2778 Reflections with $F>4 \sigma(F)$ (296 parameters) were refined by large-block least-squares, all non-H atoms anisotropic, except ether (treated as $\mathrm{O}-\mathrm{C}-\mathrm{C}$ group), H atoms in calculated positions; $R=0.050, R_{\mathrm{w}}=$ 0.060 .

 Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

