q2-S,S'-1,5-Dithia-2,4,6,8-tetrazocine Analogues of q2-Alkene Complexes: Preparation and Electronic Structure of Pt[1,5-(Me₂N)₂C₂N₄S₂](PPh₃)₂

Tristram Chivers," Kaveripatnam S. Dhathathreyan, and Tom Ziegler"

Department of Chemistry, The University of Calgary, Calgary T2N 1 N4, Alberta, Canada

The reaction of Pt(C₂H₄)(PPh₃)₂ with 1,5-E₂N₄S₂ (E = Ph₂P, Me₂NC) in acetonitrile produces high yields of Pt(1,5-E₂N₄S₂)(PPh₃)₂ in which the η ²-S,S' bonding between platinum and the heterocyclic ligand is shown by density functional calculations to be analogous to that found in η^2 -alkene-platinum complexes.

The nature of the weak cross-ring **S-S** interactions *[d(S-S)-* 2.5 Å] in 1,5-dithiatetrazocines $E_2N_4S_2$, **(1a)** $E = Me_2NC;$ ¹ **(1b)** $E = Me_2P$; 2 (1c) $E = Ph_2P$, 3 is a fundamental issue in understanding the unusual structures and bonding in sulphurnitrogen **(S-N)** rings and cages.4 In connection with studies of the stereochemistry of oxidation of $(1a)$ ⁵ and $(1c)$ ^{5.6} by polar and radical reagents, Oakley *et al.* have pointed out the isolobal correspondence between the σ and σ^* orbitals of these S-S bonds and the π and π^* orbitals of an electron-deficient alkene (Figure 1).5 **As** a test of this analogy we have investigated the reactions of **(la)** and **(lc)** with zerovalent platinum complexes and we report here the preparation of $Pt(E_2N_4S_2)(PPh_3)_2$, **(2a)** $E = Me_2N$; **(3)** $E = Ph_2P$. These complexes exhibit a novel bonding mode between the

heterocyclic ligand and platinum involving an η^2 -S,S' interaction which, on the basis of relativistic density functional calculations, is comparable to that found in the classic metal-alkene complexes. 7

The reactions of $Pt(C_2H_4)(PPh_3)_2$ with **(1a)** or **(1c)** proceed rapidly in toluene under nitrogen at room temperature to give

Table 1. Decomposition^a of calculated $D(Pt-L)$ bond energies (kJ mol⁻¹) in $(H_3)_2PtL$.

a Decomposition^{9d} of $D(Pt-L)$ according to equation (2). **b** Contribution from deformation of $(PH₃)₂Pt$ is -50.2 kJ mol⁻¹.

yellow precipitates of 1:1 complexes in which ethylene has been displaced by the heterocyclic ligand [reaction (1)].

$$
Pt(C_2H_4)(PPh_3)_2 + E_2N_4S_2 \xrightarrow{-(C_2H_4} Pt(E_2N_4S_2)(PPh_3)_2
$$

(2a) $E = Me_2NC$
(3) $E = Ph_2P$

Compound **(2a)** was obtained in 79% yield as pale yellow, rectangular crystals (m.p. 241 "C) after recrystallization from acetonitrile and **(3)** was produced in 72% yield as yellow microcrystals (m.p. 197-198 °C) after recrystallization from $CH_2Cl_2-C_6H_6$.[†] The ¹H n.m.r. spectrum of (2a) in CDCl₃ exhibits a singlet at δ 2.91 *[cf.* δ 3.15 for **(1)** $(E = Me_2NC)$ ¹ and the $31P{1H}$ n.m.r. spectrum shows a singlet at +19.9 p.p.m. (ref. external 85% H_3PO_4) with $1J_{Pt-P}$ 3225 Hz. The $31P{1H}$ n.m.r. spectrum of (3) in CDCl₃ at 25^oC exhibits singlets at +15.3 (Ph₃P) ($1J_{Pt-P}$ 2850 Hz) and +39.0 (Ph₂P) $(J_{\text{Pt-P}}$ 580 Hz). The ³¹P n.m.r. spectrum of **(3)** at -60°C is identical to that obtained at 25 "C. The n.m.r. data for **(2a)** and **(3)** indicate that the heterocyclic ligand is symmetrically bonded to platinum, but these data do not distinguish between the structural possibilities (4) $\frac{1}{4}$ {cf. S₄N₄ CuX₂ (X = Br, Cl) and α -[TiCl₄(S₄N₄)]₂} and (5).⁸

We have carried out relativistic^{9a} density functional calculations^{9b} on the complexes $(PH_3)_2$ PtL, $(2b)$ L = 1,5- $(H_2N)_2C_2N_4S_2$; **(6)** $L = C_2(CN)_4$; and **(7)** $L = C_2H_4$, based on the HFS-LCAO program system,^{9c} where (2b) should serve as a realistic model for the title compound **(2a); (6)** and (7) are representative d^{10} alkene complexes. Calculated $D(Pt-L)$ bond energies for the three systems **[(2b), (6)** and (7)] are given in Table 1 decomposed^{9d} according to equation (2) .

$$
D(\text{Pt-L}) = -[\Delta E_{\text{prep}} + \Delta E_{\text{O}} + \Delta E_{\text{D}} + \Delta E_{\text{BD}} + \Delta E_{\text{R}}] \quad (2)
$$

Figure 1. Schematic representation of the S-S σ and σ^* orbitals in (1) (S-N antibonding components are not shown) and the π and π^* orbitals of alkene.

In equation (2) ΔE_{prep} represents the energy required to deform $(PH_3)_2$ Pt and L into the structures of the two fragments in the combined complex, ΔE_{Ω} is the steric interaction energy between $(PH_3)_2$ Pt and L in $(PH_3)_2$ PtL, $-\Delta E$ _D is the stabilization of the Pt-L bond due to the donation from $\sigma(S-S)$ (2b) or π (alkene) (6) and (7), $-\Delta E_{BD}$ is the corresponding stabilization due to the back-donation to $\sigma^*(S-S)$ (2b) or π^* (alkene) (6) and (7), and $-\Delta E_R$ represents contributions to $D(PL-L)$ from relativistic effects. The results in Table 1 confirm the notion that the bonding in **(2b)** is analogous to that found in platinum-alkene complexes.7 In fact the order for $-\Delta E_{BD}$ is calculated as **(6)** > **(2b)** > **(7)**. This order can be related to the energies of the acceptor orbitals, $\sigma^*(S-S)$ or $\pi^*(alkene)$, calculated (in eV) as -5.4, -3.3, and **-1.7,** for the free (deformed) ligands of **(6), (2b),** and (7), respectively. The charges back-donated are 0.92, 0.76, and 0.57 for **(6), (2b),** and (7), respectively. Thus the back-donation to the heterocyclic ligand in **(2b)** is seen to fall between that to the electron-deficient alkene $C_2(CN)_4$ in **(6)** and that to the more electron-rich alkene C_2H_4 in (7).

Numerous adducts of S_4N_4 (1) $E = S$, with transition metal halides, are known and they involve mono- or bi-dentate co-ordination to the metal *via* a nitrogen atom.^{10,11} The only exception is the six-co-ordinate complex IrClis the six-co-ordinate complex IrCl- $(CO)(PPh_3)(S_4N_4)$ in which the Ir atom is inserted into an S-N bond of S4N4 which functions as a tridentate **(N,S,S)** ligand.12 Thus compound **(2a)** represents a new structural type and bonding mode for complexes of S-N ligands with metals and presages an interesting co-ordination chemistry for ligands of type **(1).**

Finally, we note that the reaction of S_4N_4 with zerovalent platinum complexes produces the unstable adduct $Pt(S_4N_4)(PPh_3)_2^{13}$ prior to decomposition to give mono- and di-nuclear complexes containing $P(S_2N_2 \text{ rings.}^{14-16})$ It seems reasonable to propose that η^2 -S,S' bonding is also involved in this adduct and that co-ordination of another Pt atom to the

t Satisfactory C, H, and N analyses were obtained for **(2a)** and **(3).**

 \ddagger Preliminary X-ray structural data for (2a) have established that this complex adopts the η^2 -S,S' structure (5), with approximately square planar co-ordination at Pt: \angle PPtP = 101.3(3), \angle SPtS = 79.2(5)°, $d(Pt-S) = 2.36(1), d(Pt-P) = 2.32(1), d(S-S) = 3.01(2)$ Å *[cf. d(S-S)* $= 2.43 \text{ Å}$ in (1) $E = \text{Me}_2\text{NC}$.¹ Problems have been encountered with the refinement and further structural details will be given in the full paper (J. Fait, personal communication).

second **S-S** bond in **S4N4** leads to cleavage of the **S-N** heterocycle to give the observed cyclometallathiazenes.

We thank the N.S.E.R.C. (Canada) for financial support.

Received, 8th August 1988; Corn. 8103241 F

References

- I. Ernest, W. Holick, G. Rihs, D. Schomburg, G. Shoham, D. Wenkert, and R. B. Woodward, *J. Am. Chem. SOC.,* 1981, 103, 1540.
- 2 N. Burford, T. Chivers, P. W. Codding, and R. T. Oakley, *Inorg. Chem.,* 1982, 21, 982.
- N. Burford, T. Chivers, and J. **F.** Richardson, *Inorg. Chem.,* 1983, 22, 1482.
- T. Chivers, *Chem. Rev.,* 1985, 85, 341.
- R. T. Boerd, **A.** W. Cordes, **S.** L. Craig, T. T. Oakley, and R. W. Reed, *J. Am. Chem. SOC.,* 1987, **109,** 868.
- N. Burford, T. Chivers, M. N. **S.** Rao, and J. F. Richardson, *Inorg. Chem.,* 1984, 23, 1946.
- **7** M. J. *S.* Dewar, *Bull. SOC. Chim. Fr.,* 1953, 18, C79; J. Chatt and **L. A.** Duncanson, *J. Chem. SOC.,* 1953: 2939.
- 8 U. Thewalt, *Angew. Chem., Znt. Ed. Engl.,* 1976, 15, 765; U. Thewalt and B. Muller, *2. Naturforsch., Teif B,* 1988, 37, 828; **U.** Thewalt and K. Holl, *ibid.,* 1988, **43,** 467.
- 9 (a) J. G. Snijders, E. J. Baerends, and P. Ros, *Mol. Phys.,* 1979, 33, 1909; (b) **A.** Becke, *J. Chem. Phys.,* 1986, 84, 4524; (c) E. J. Baerends, D. **E.** Ellis, and P. Ros, *Chem. Phys.,* 1973,2,71; (d) T. Ziegler and A. Rauk, *Inorg. Chem.*, 1979, 18, 1588.
- 10 T. Chivers and F. Edelmann, *Polyhedron,* 1986, *5,* 1661.
- 11 P. F. Kelly and J. D. Woollins, *Polyhedron,* 1986, *5,* 607.
- 12 F. Edelmann, **H.** W. Roesky, C. Spang, M. Noltemeyer, and G. M. Sheldrick, *Angew. Chem., Int. Ed. Engl.,* 1986, 25, 931.
- 13 A. A. Bhattacharyya, J. A. McLean, Jr., and A. G. Turner, *Inorg. Chim. Acta,* 1979, 34, L199.
- 14 C. **A.** Ghilardi, **S.** Midollini, **S.** Moneti, and **A.** Orlandini, *J. Organomet. Chem.,* 1985, 286, 419.
- 15 R. Jones, P. F. Kelly, D. J. Williams, and J. D. Woollins,J. *Chem. SOC., Chem. Commun.,* 1985, 1325.
- 16 T. Chivers, F. Edelmann, U. Behrens, and R. Drews, *Inorg. Chim. Acta,* 1986, 116, 145.