105

Loss of Pentamethylcyclopentadiene from Pentamethylcyclopentadienylrhodium Hydride Complexes

Margarita Paneque and Peter M. Maitlis*

Department of Chemistry, The University, Sheffield S3 7HF, U.K.

Pentamethylcyclopentadienylrhodium hydride complexes eliminate pentamethylcyclopentadiene on reaction with trimethylphosphine.

A most useful feature of the pentamethylcyclopentadienylrhodium complexes is the inertness of the ring to metal bond. This has allowed the development of an extensive stoicheiometric and catalytic chemistry involving the other co-ordination sites on the metal, but where the ring stays intact.¹ Indirect evidence has indicated that this inertness is only relative and that the ring is sometimes lost.² We here report two stoicheiometric reactions where this occurs under quite mild conditions, when hydride as a co-ligand is present on the metal.

The n.m.r. spectra of a C_6D_6 solution containing $[(C_5Me_5)RhH_3(SiEt_3)]$ (1)³ and one equivalent of PMe₃ showed (0.5 h, 25 °C) the presence of only starting material and $[HRh(PMe_3)_4]^4$ (2) {¹H n.m.r., δ 1.29 (s, Me), -12.33 [H, dquin, J(H-P) = J(Rh-H) = 14 Hz]; ³¹P{(C¹H₃)₃} n.m.r. δ -19.5 dd; J(Rh-H) = 146, J(P-H) 14 Hz}. On addition of a 10-fold excess of PMe₃, (1) was completely converted into (2); the other products were C_5Me_5H and Et₃SiH, identified by comparison of their ¹³C and ¹H n.m.r. spectra with those of authentic specimens.

When the reaction was repeated at lower temperature

(10 °C) with a 1:1.8 molar ratio of PMe₃ to $[(C_5Me_5)RhH_3-(SiEt_3)]$ (1), the ¹H n.m.r. spectrum showed the presence of (1) and $[(C_5Me_5)RhH_2(PMe_3)]$ (3),⁵ in the ratio of 43:57. When excess of PMe₃ was then added at 25 °C, the remaining $[(C_5Me_5)RhH_3(SiEt_3)]$ was converted directly into $[HRh(PMe_3)_4]$. This mixture did not change its composition further on standing at 25 °C.

One interpretation of these data is that (1) reacts with PMe₃ an η^1 -intermediate such as $[(\eta^1 - C_5 Me_5)RhH_3$ via $(SiEt_3)(PMe_3)$ ⁶ which, at lower temperature reductively eliminates SiHEt₃ to give (3), or at rather higher temperatures $[(\eta^1-C_5Me_5)RhH_3$ reacts further with PMe₃ via $(SiEt_3)(PMe_3)_x$ (x = 2, 3) to yield (2), C₅Me₅H, and SiHEt₃. However even $[(C_5Me_5)RhH_2(PMe_3)]$ (3) lost the ring at $60 \,^{\circ}\text{C}$ (C₆D₆ solution) when reacted with excess of PMe₃ (1:10; 45% conversion after 5 h, 70% after 9 h), to give a solution which was shown by ¹H, ¹³C, and ³¹P n.m.r. spectroscopy to contain only [HRh(PMe₃)₄] (2), C₅Me₅H, and excess of PMe₃.

The reactions may be summarised as in equations (1)—(3). By contrast, $[{(C_5Me_5)RhCl_2}_2]$ reacted stepwise with three

$$[(C_5Me_5)RhH_3(SiEt_3)] + PMe_3 \xrightarrow{10^\circ C} [(C_5Me_5)RhH_2(PMe_3)] + SiEt_3H \quad (1)$$

$$[(C_5Me_5)RhH_3(SiEt_3)] + excess PMe_3 \xrightarrow{25 \circ C} [HRh(PMe_3)_4] + C_5Me_5H + SiEt_3H \quad (2)$$

$$[(C_5Me_5)RhH_2(PMe_3)] + excess PMe_3 \xrightarrow{60^{\circ}C} [HRh(PMe_3)_4] + C_5Me_5H \quad (3)$$

equivalents of PMe₃ to displace the three chlorines on each rhodium, giving, successively, $[(C_5Me_5)RhCl_2(PMe_2)]$, $[(C_5Me_5)RhCl(PMe_3)_2]Cl$, and $[(C_5Me_5)Rh(PMe_3)_3]Cl_2$, but there was no further reaction, even with an excess of PMe₃ at 60 °C.

The ease of ring displacement is related to the stability of the leaving group. Thus pentamethylcyclopentadiene can be eliminated when the rhodium bears a hydride, whereas the driving force for the formation of the presumably very unstable C_5Me_5Cl , the corresponding product from $[{(C_5Me_5)RhCl_2}_2]$, would be expected to be much less.

We draw attention to these results since they illustrate that in some circumstances, and under mild conditions, the C_5Me_5 ring on rhodium is not just an innocent spectator ligand. Loss of C_5H_6 has also been reported to occur when $[(C_5H_5)ReH-(CO)(NO)]$ was heated with PMe₃ (80 °C).⁷ Loss of $[C_5H_5PMe_3]$ I also occurs from $[\{(C_5H_5)M(NO)I_2\}_2]^8$ (M = Mo, W), on reaction with PMe₃, but this does not appear to have been observed with C_5Me_5 -complexes yet. We thank the S.E.R.C. for support, Johnson Matthey for the loan of rhodium salts, Professor E. Carmona for help and encouragement, and Dr. R. N. Perutz for stimulating discussions.

Received, 14th October 1988; Com. 8/04089C

References

- J. W. Kang, K. Moseley, and P. M. Maitlis, J. Am. Chem. Soc., 1969, 91, 5970; P. M. Maitlis, Acc. Chem. Res., 1978, 11, 307; Chem. Soc. Rev., 1981, 10, 1.
- 2 See, for example, J. E. Hamlin, K. Hirai, V. C. Gibson, and P. M. Maitlis, J. Mol. Catal., 1982, 15, 337; W. D. Jones and F. J. Feher, Organometallics, 1983, 2, 686.
- 3 J. Ruiz, B. E. Mann, C. M. Spencer, B. F. Taylor, and P. M. Maitlis, J. Chem. Soc., Dalton Trans., 1987, 1963.
- 4 R. A. Jones, F. M. Real, G. Wilkinson, A. M. R. Galas, and M. B. Hursthouse, J. Chem. Soc., Dalton Trans., 1981, 126.
- 5 K. Isobe, P. M. Bailey, and P. M. Maitlis, J. Chem. Soc., Dalton Trans., 1981, 2003; R. A. Periana and R. G. Bergman, J. Am. Chem. Soc., 1986, 108, 7332.
- 6 Alternative η⁴-C₅Me₅HRh intermediates may also be involved, see for example, K. Moseley and P. M. Maitlis, *Chem. Commun.*, 1969, 616; K. Moseley, J. W. Kang, and P. M. Maitlis, *J. Chem. Soc.* (A), 1970, 2875.
- 7 C. P. Casey, J. M. O'Connor, and K. J. Haller, J. Am. Chem. Soc., 1985, 107, 3172.
- 8 N. J. Christensen, A. D. Hunter, P. Legzdins, and L. Sanchez, *Inorg. Chem.*, 1987, **26**, 3344; see also J. M. O'Connor and C. P. Casey, *Chem. Rev.*, 1987, **87**, 307.