Chemo- and Stereo-selective Preparation of Cyclopentanone Derivatives from Cyclohexenones using Trimethylstannyl-lithium as a Key Reagent

Tadashi Sato,* Toshiyuki Watanabe, Toshihiro Hayata, and Tohru Tsukui

Department of Applied Chemistry, Waseda University, Ookubo 3, Shinjuku-ku, Tokyo 160, Japan

Upon treatment with trimethylsilyl trifluoromethane-sulphonate, β -stannylcyclohexanones afforded cyclopentanones chemo- and stereo-selectively.

In our previous paper,¹ we described the versatility of trimethylstannyl-lithium **(1)** as a synthetic tool. **As** shown in Scheme 1, the reagent reacted with α , β -enones **(2)** to produce P-stannyl ketones **(3),** after trapping the enolates with electrophiles. When treated with Lewis acids, the β -stannyl ketones underwent two types of reaction producing ketones *(5)* and **(6),** presumably through the ring cleavage of the intermediate cyclopropanols **(4).** It was found that the bond fission occurred predominantly on the bond to the lesssubstituted carbon, thus affording the Type B products **(6)** as sole products from α , β -enones having substituents at the P-position.

In view of the unique carbon-skeleton rearrangement, the Type B reaction is promising as a method for synthesis of cyclopentanone derivatives, and we investigated the reaction in more detail, particularly regarding its chemo- and stereoselectivity.

Kitching2 reported that the conjugate addition of **(1)** to 5-methylcyclohex-2-enone **(7b)** afforded cis and trans adducts, with the trans isomer as the major product (Scheme 2). We monitored the reaction and separated the trans isomer **(8b)** in pure state. Treatment of the compound with titanium(1v) chloride gave a mixture of Type **A** product **(9b)** and Type B product **(lob)** in a ratio of **41** : 59 (Table 1, run 1). The result was in accord with our previous observations¹ that α , β -enones having no substituent at the β -position (R¹ = H) gave both products with low selectivity. With a view to improve the selectivity, we then carried out the reaction using several kinds **of** Lewis acids, and found that trimethylsilyl trifluoromethanesulphonate (TMSOTf) gave the best results, producing (10b) exclusively as shown in run **3.** Comparison of the product with a commercial sample $(cis: trans = 3:1)$ using g.l.c. (with capillary column) and **13C** n.m.r. spectroscopy,3 revealed that the product was mainly the *trans* isomer (*cis* : *trans* $1:28$). Upon standing at room temperature, the trans-dominant product changed into a cis-dominant mixture. Evidently, the reaction proceeded under kinetic control, affording the less stable product. The reaction could be rationalised as shown in Scheme **3,** proceeding with inversion at the tin-bearing carbon, in accord with earlier observations **.4**

Scheme 1. $^{\circ}$ LA = Lewis acid.

Table 1. Reaction of β-stannyl ketones with Lewis acids.

Run	Starting enone	Yield of $(8)\%$	Lewis acid	Temp. ľС	Time /min	Ratio (9) : (10)	Total yield/%
	(7 _b)	91	TiCl ₄	-78	180	41:59	49
2			$BF3-Et2O$	room temp.	720	32:68	\sim 40 ^a
			TMSOTfc	-78	180	0:100 ^b	52
	(7c)	61	TiCL	0	15	24:76	64
			TMSOTf	room temp.	180	5:95	43
6	(7d)	98	TiCl ₄	-78		14:86	56
			TMSOTf	0	300	1:99	62
8	(7e)	51	TiCl ₄	-78	15	42:58	61
9			$BF3-Et2O$	room temp.	720	24:76	56
10			TMSOTf	room temp.	30	4:96	66

a (8b) was recovered (-40%) as a mixture *trans/cis* = $1/16$. **b** As a mixture *trans/cis* = $28/1$. **c** Trimethylsilyl trifluoromethanesulphonate.

Scheme 2. (a): $R^1 = R^2 = Me$, (b): $R^1 = R^2 = H$, (c): $R^1 = Me$, $R^2 =$ $-CH_2-CH=CH_2$, **(d)**: $R^1 = Me$, $R^2 = -CH_2-C=CH$, **(e)**: $R^1 = Me$, R^2 $= -CH₂Ph.$

Scheme 3

As an extension of the reaction, we tried to prepare cyclopentanones carrying functionalised substituents. The β -stannyl ketones (δc)—(δe) were obtained by the reaction of **(1)** with **3,5-dimethylcyclohex-2-enone** followed by quenching with ally1 bromide, prop-2-ynyl bromide, and benzyl bromide, respectively. In contrast to the case of $(8a)$,¹ the Type B selectivity was poor when titanium(IV) chloride or boron

fluoride was used as a Lewis acid. However, upon treatment with TMSOTf, these stannyl ketones afforded the corresponding cyclopentanone derivatives with high chemoselectivity (runs $5, 7, 10$).[†] Analyses by g.l.c. as well as ¹³C n.m.r. and 400 **MHz** 1H n.m.r. spectroscopy showed that all the products are stereochemically pure. Since optically active 5-methylcyclohex-2-enone is easily accessible, we expect that this reaction could be developed into a general method for the preparation of useful chiral synthons.

Received, 4th August 1988; Corn. 8103205J

References

- 1 T. Sato, M. Watanabe, T. Watanabe, **Y.** Onoda, and E. Murayama, J. *Org. Chem.,* 1988, **53,** 1894.
- 2 G. Wickham, **H. A.** Olszowy, and W. Kitching, J. *Org. Chem.,* 1982, **47,** 3788.
- 3 J. B. Stothers and C. T. Tan, *Can.* J. *Chem.,* 1974, **52,** 308.
- 4 **I.** Fleming and C. J. Ruch, J. *Organomet. Chem.,* 1985, **285,** 173; D. D. Davis, and H. T. Johnson, J. *Am. Chem. SOC.,* 1974, **96,** 7576.

t The cyclopentanone structure was unambiguously determined in view of the presence of quaternary carbons and complete proton assignment by 400 MHz ¹H n.m.r. spectra of $(10c)$ — $(10e)$.