A New Class of Dihydrogen Complexes containing Oxygen Donor Ligands. Preparation of RuH(η^2 -H₂)(OCOCF₃)[P(C₆H₁₁)₃]₂ and of the Equilibrated Mixture RuH₂(OCOCF₃)₂[P(C₆H₁₁)₃]₂/Ru(η^2 -H₂)(OCOCF₃)₂[P(C₆H₁₁)₃]₂

Thérèse Arliguie and Bruno Chaudret*

Laboratoire de Chimie de Coordination du CNRS, Unité nº 8241 liée par conventions à l'Université Paul Sabatier et à l'Institut National Polytechnique, 205, route de Narbonne, 31077 Toulouse Cedex, France

The protonation of $\text{RuH}_2(\text{H}_2)_2(\text{PCy}_3)_2$ (1) (Cy = cyclohexyl) with CF₃CO₂H in acetone leads to the hydrido dihydrogen derivative $\text{RuH}_4(\text{H}_2)(\text{OCOCF}_3)(\text{PCy}_3)_2$ (2), which reacts further in hexane to yield a very reactive Ru^{1V} dihydride, $\text{RuH}_2(\text{OCOCF}_3)_2(\text{PCy}_3)_2$ (3), a species which at room temperature is in equilibrium with the dihydrogen complex $\text{Ru}(\eta^2-\text{H}_2)(\text{OCOCF}_3)_2(\text{PCy}_3)_2$ (4); (3) [or (4)] loses H₂ in solution and reacts with cyclo-octene to give $\{\text{Ru}(\text{C}_6\text{H}_9\text{PCy}_2)(\text{OCOCF}_3)_2(\mu-O)(\mu-\text{OCOCF}_3)_2$ (6).

The chemistry of polyhydrido transition metal derivatives has attracted renewed interest since it has been discovered that many of these species contain co-ordinated dihydrogen.¹ We have developed in recent years the chemistry of polyhydrido ruthenium complexes² which were shown recently to be octahedral ruthenium(II) dihydride derivatives.³ The complexes also contain co-ordinated dihydrogen like the unusual 'hexahydride' RuH₆(PCy₃)₂ (Cy = cyclohexyl) reformulated as [RuH₂(H₂)₂(PCy₃)₂].³ Examples of higher oxidation state

ruthenium hydride complexes are rare. However, the carbaborane compounds 2,1,7- and 3,1,2-[RuH₂(C₂B₉H₁)-(PPh₃)₂]⁴ and [RuH₃(SiR₃)(PPh₃)₃]⁵ are recognized as genuine Ru^{IV} derivatives. More recently, Davies *et al.* have reported RuH₃(C₅H₅)PPh₃⁶ and different authors RuH₃(C₅Me₅)PR₃ (including us).^{2c.7} In all cases, these complexes were considered as seven-co-ordinate ruthenium(IV) trihydrides. However, we have shown that if these complexes are likely to contain ruthenium(IV) in the solid state or at low

Scheme 1. Reactions of $RuH_2(H_2)_2(PCy_3)_2$ with CF_3CO_2H .

temperature in solution, they should be considered at room temperature as ruthenium(π) derivatives containing a novel trihydrogen ligand.⁸

The protonation of ruthenium(Π) hydrido complexes has been shown by Simpson *et al.*⁹ and Heinekey *et al.*¹⁰ to produce either ruthenium(Π) dihydrogen or ruthenium(Π) dihydride compounds according mainly to the steric bulk of the ligand. In some cases, a dihydride–dihydrogen equilibrium was found which demonstrated the small difference of energy between the two forms. A similar protonation of RuH₃-(C₅Me₅)(PCy₃) leads to the spontaneous and rapid dehydrogenation of the tricyclohexylphosphine ligand probably because of the existence of unstable intermediates containing co-ordinated dihydrogen.¹¹

This led us to reinvestigate more thoroughly the protonation of our 'polyhydro' ruthenium complexes and in particular that of $RuH_2(H_2)_2(PCy_3)_2$.

We reported a few years ago the reaction of RuH2- $(H_2)_2(PCy_3)_2$ (1) with HBF₄·H₂O which led to the dication $[Ru(H_2O)_5(PCy_3)]^{2+.2a}$ The same reaction with HBF₄·Et₂O yielded a mixture of compounds. However with CF₃CO₂H in acetone, the reaction is smoother producing a yellow complex analysing for RuH₃(OCOCF₃)(PCy₃)₂[†] (2) in 60% isolated yield. The i.r. spectrum shows a hydride at 2095 cm^{-1} (m) and a chelating carboxylato group at 1620 and 1440 cm⁻¹ (ms) whereas the ¹H n.m.r. spectrum shows a high-field triplet signal at $\delta - 14.8$ (J 14.3 Hz). The number of hydrogen atoms is deduced both from the integration of the ¹H n.m.r. spectrum and from the observation of a quartet in a partially decoupled ³¹P n.m.r. spectrum. The complex is fluxional at all temperatures; only a broadening of the signal is observed at low temperature. The variations with temperature of the relaxation time T_1 of the 'hydrides' has been studied and a minimum of about 20 ms was found near 230 K. † This is typical

Figure 1. High field ¹H n.m.r. spectrum of the (3)/(4) mixture at various temperatures (250 MHz).

for a dihydrogen complex and (2) can thus be considered as a new example of a fluxional hydrido dihydrogen derivative, ^{1b,1c,2,3} RuH(H₂)(OCOCF₃)(PCy₃)₂. The observed J_{H-P} for the 'hydride' signal is the mean value between what is expected for a typical hydride (34 Hz) and what is assumed for molecular hydrogen (~4 Hz).¹⁰ This complex is air-sensitive but thermally very stable and for example remains largely unchanged after a 15 h reaction with neohexene at 100 °C in cyclohexane or cyclopentane. Similarly, exposure to u.v. irradiation (high pressure mercury vapour lamp) does not cause H₂ evolution.

Complex (2) does not react with excess of CF_3CO_2H in acetone but does react instantly in hexane to give after H_2 evolution a quantitative yield of a product analysing for $RuH_2(OCOCF_3)_2(PCy_3)_2$ (3) \ddagger Two $\nu(Ru-H)$ i.r. bands are observed as well as a band for a chelating and for a monodentate carboxylato group. The ¹H n.m.r. spectrum shows a hydride signal as a triplet (J_{P-H} 30 Hz) at room temperature which splits into two broad peaks at 193 K whereas the ³¹P n.m.r. spectrum shows at room temperature a singlet splitting into two broad peaks of equal intensity at 193 K. These data are clearly in favour of the formulation of the complex as a seven-co-ordinate ruthenium(IV) dihydride. However, a careful study of the ³¹P n.m.r. spectra demonstrates that a third peak of much smaller intensity is taking part in the exchange (Figure 2), Similarly, a broad peak appears at 243 K in the ¹H n.m.r. spectrum on the side of the hydride peak (Figure 1). It then disappears at lower temperature

[†] Spectroscopic data for (2): i.r. (Nujol): v(Ru-H) 2095 cm⁻¹, v(CO) 1620, 1440 cm⁻¹. ¹H n.m.r. (250 MHz) δ -14.8 (t, J 14.3 Hz, 3H), 1–2 (m, 66H); ³¹P n.m.r. δ 56.12 (s). T_1 values for the high field signal: 296 K, 56 ms; 273 K, 34; 243 K, 23; 213 K, 27; 193 K, 72. Estimated T_1 minimum 15 ms at 226 K.

[‡] RuH₂(OCOCF₃)₂(PCy₃)₂: i.r. (Nujol) v(Ru-H) 2160, 2080 cm⁻¹; v(CO) (bidentate acetate) 1620 (ms), 1440 cm⁻¹; v(CO) (terminal acetate) 1700 (vs), 1400 cm⁻¹. ¹H n.m.r. (250 MHz) (C₇D₈, 293 K) δ -12.2 (t, *J* 30 Hz, 2H), δ 1—2 (m, 66 H); (C₇D₈, 193 K) δ -11.57 (br.), -12.92 (br.); ³¹P n.m.r. (C₇D₈, 293 K): 78.52 (s); 193 K: 92.84 (s), 67.61 (s) and 80.37 (s) [peak of (4), see text and Figure 2].

Figure 2. ${}^{31}P^{-1}H$ n.m.r. spectrum of the (3)/(4) mixture at various temperatures (101.2 MHz).

probably because of broadening. The determination of the relaxation time of the hydride signals gives 432 ± 10 ms at 193 K for the two peaks of (3) and 45 ± 5 ms at 293 K for the average signal. These values cannot arise from a normal variation as a function of the temperature since, as (2) and (3) have similar steric bulk, the temperature of the minimum will not be very different.^{1c} However a rapid equilibrium at room temperature, between a dihydride complex (3) and a dihydrogen complex, Ru(H₂)(OCOCF₃)₂(PCy₃)₂ (4) would fit all the data (Scheme 2). When the temperature is lowered, the exchange becomes slow and it is then best observed by ³¹P n.m.r. signal for (4) is probably so broad at 193 K that it is not observed.

Complex (3) or (4) is very reactive, losing H₂ slowly in solution to give a species characterized by spectroscopic methods and tentatively formulated as $[Ru(OCOCF_3)_2-(PCy_3)_2]_n$ (5); with O₂ a blue species unidentified so far is obtained and with cyclo-octene a dehydrogenation of tricyclohexylphosphine is observed to give cyclo-octene and a 50% isolated yield of $[{Ru(C_6H_9PCy_2)(OCOCF_3)}_2(\mu-O)(\mu-OCOCF_3)_2]$ (6) characterized by an X-ray structure determination. The mechanism of formation and the magnetic properties of this diruthenium(III) species are currently being studied.

In summary, we have described a new example of a fluxional hydrido dihydrogen derivative and to the best of our knowledge, the first dihydride of Ru^{IV} containing oxygen donor ligands, which furthermore shows a dihydride–dihydrogen equilibrium.¹² The interesting point is the instability of (4) which readily loses H₂. This can be deduced from the replacement of a good σ donor ligand (H⁻) by an electron-

Scheme 2. Proposed structure for the equilibrated mixture $(3) \rightleftharpoons (4)$.

withdrawing ligand, (-OCOCF).¹³§ However, this electronic factor should prevent the formation of a dihydride. The existence of the dihydride (**3**) then results most probably from steric factors: the increase of ligand bulk when replacing H⁻ by OCOCF₃⁻. Another possibility would be the unusual stabilization of the dihydrogen ligand in (**2**) through interaction with the hydride ligand. Such an interaction has been proposed to account for the anomalous n.m.r. properties of some trihydride–trihydrogen derivatives.^{8,14} A hydride–dihydrogen interaction has been demonstrated for the first time in an iron dihydrido dihydrogen complex.¹⁵

Received, 1st July 1988; Com. 8/02627K

References

- (a) G. G. Hlatky and R. H. Crabtree, *Coord. Chem. Rev.*, 1985,
 65, 1; (b) R. H. Crabtree and D. G. Hamilton, *J. Am. Chem. Soc.*,
 1986, 108, 3124; (c) *ibid.*, 1988, 110, 4126; (d) R. H. Crabtree, M. Lavin, and L. Bonneviot, *ibid.*, 1986, 108, 4032.
- 2 (a) B. Chaudret and R. Poilblanc, Organometallics, 1985, 4, 1722;
 (b) B. Chaudret, J. Devillers, and R. Poilblanc, *ibid.*, 1985, 4, 1727;
 (c) T. Arliguie and B. Chaudret, J. Chem. Soc., Chem. Commun., 1986, 985.
- 3 T. Arliguie, B. Chaudret, R. H. Morris, and A. Sella, *Inorg. Chem.*, 1988, **27**, 598.
- 4 E. M. S. Wong and M. F. Hawthorne, J. Chem. Soc., Chem. Commun., 1976, 257.
- 5 H. Kono, N. Wakao, K. Ito, and Y. Nagai, J. Organomet. Chem., 1977, **132**, 53.
- 6 (a) S. G. Davies, S. D. Moon, and S. J. Simpson, J. Chem. Soc., Chem. Commun., 1983, 1278; (b) G. J. Baird, S. G. Davies, S. D. Moon, S. J. Simpson, and R. H. Jones, J. Chem. Soc., Dalton Trans., 1985, 1479.
- 7 (a) R. Paciello and J. E. Bercaw, Abstr. 191st ACS Nat. Meeting, New York, 1986, Inor 82; (b) H. Suzuki, D. H. Lee, N. Oshima, and Y. Moro-Oka, J. Organomet. Chem., 1986, 317, C45; Organometallics, 1987, 6, 1569.
- 8 (a) T. Arliguie, B. Chaudret, J. Devillers, and R. Poilblanc, C.R. Acad. Sci. Paris, 1987, 305-II, 1523; (b) T. Arliguie, B. Chaudret, C. Border, J. Devillers, and R. Poilblanc, Organometallics, in the press.
- 9 F. M. Conroy-Lewis and S. J. Simpson, J. Chem. Soc., Chem. Commun., 1986, 506; 1987, 1675.
- 10 M. S. Chinn and D. M. Heineckey, J. Am. Chem. Soc., 1987, 109, 5865.
- 11 T. Arliguie, B. Chaudret, F. Jalon, and F. Lahoz, J. Chem. Soc., Chem. Commun., 1988, 998.
- 12 G. J. Kubas, R. R. Ryan, and D. A. Wrobleski, J. Am. Chem. Soc., 1986, 108, 1339.
- 13 R. H. Morris, K. A. Earl, R. L. Luck, N. J. Lazarowyck, and A. Sella, *Inorg. Chem.*, 1987, 26, 2674.
- 14 A. Antinolo, B. Chaudret, G. Commenges, M. Farjardo, F. Jalon, R. H. Morris, A. Otero, and C. T. Schweitzer, J. Chem. Soc., Chem. Commun., 1988, 1210.
- 15 K. G. Caulton and O. Eisenstein, personal communication, 1988.

§ A referee pointed out that carboxylato groups are good π -donor ligands. However, if the existence of (3) is due to electronic factors, then the instability of (4) is unexpected.