Rearrangement of a Metal (η^2 -Alkyne) Complex to a Metal Vinylidene and Subsequent Reaction of the Metal Vinylidene to Regenerate the Alkyne

R. Morris Bullock

Department of Chemistry, Brookhaven National Laboratory, Upton, NY 11973 U.S.A.

The η^2 -alkyne complex $(C_5H_5)(PMe_3)_2Ru(HC\equiv CMe)+PF_6^-$, which was isolated from a reaction of HC \equiv CMe with $(C_5H_5)(PMe_3)_2RuCl$, undergoes first-order rearrangement to give $(C_5H_5)(PMe_3)_2Ru=C=C(H)Me^+PF_6^-$; at higher temperatures in MeCN, this vinylidene complex cleanly regenerates HC \equiv CMe and forms $(C_5H_5)(PMe_3)_2Ru(MeCN)+PF_6^-$.

The rearrangement of acetylene to vinylidene ($H_2C=C$:) requires temperatures in excess of 500 °C,¹ but the rearrangement of metal η^2 -alkyne complexes occurs under mild conditions and provides a convenient route to metal vinylidenes.² Free vinylidene rearranges to acetylene on a picosecond time-scale;³ organometallic analogues of this reaction have been briefly mentioned,⁴ but are not well known. This communication reports the first organometallic system which demonstrates conversion of a free alkyne through isolable η^2 -alkyne and metal vinylidene complexes, and then back into the free alkyne.

The η^2 -alkyne complex $(C_5H_5)(PMe_3)_2Ru(HC\equiv CMe)^+$ $PF_6^-\dagger$ precipitates as a pale yellow powder when $HC\equiv CMe$ is bubbled through a methanol solution of $(C_5H_5)(PMe_3)_2RuCl$

containing excess of NH₄PF₆ at room temperature for 15 min (Scheme 1). This complex rearranges to the previously reported⁵ (C₅H₅)(PMe₃)₂Ru=C=C(H)Me⁺ PF₆^{-‡} in methanol or acetonitrile. The kinetics of this rearrangement were determined by monitoring the rate of appearance of the λ_{max} = 478 nm band of (C₅H₅)(PMe₃)₂Ru=C=C(H)Me⁺PF₆⁻. Evaluation of the temperature dependence of the first-order rate constants obtained at six temperatures from 15 to 40 °C in MeCN gave the activation parameters ΔH^{\ddagger} = 23.4 ± 0.3 kcal mol⁻¹ and ΔS^{\ddagger} = 3.9 ± 0.9 cal K⁻¹ mol⁻¹ (cal = 4.184 J). Werner and co-workers have isolated alkynyl–hydride complexes which are intermediates in the conversion of Rh and Ir

† $(C_5H_5)(PMe_3)_2Ru(\eta^2-HC\Xi CMe)^+$ PF_6^- : ¹H n.m.r. (CD_3CN) δ 5.02 (s, 5H, C_5H_5), 4.02 (tq, J_{PH} 10.5, ⁴ J_{HH} 2.4 Hz, 1H, ΞCH), 2.44 (dt, ⁴ J_{HH} 2.4, J_{PH} 0.6 Hz, 3H, ΞCCH_3), 1.47 ('filled-in doublet, 'separation between outer lines = ² J_{PH} + ⁴ J_{PH} = 9.5 Hz, 18H, PMe₃); ¹³ $C\{^1H\}$ [(CD₃)₂CO, 0.07 M Cr(acac), (acac = pentane-1,4-dionato), -48 °C] δ 87.1 (s, C_5H_5), 73.0 (s, ΞCCH_3), 53.6 (s, ΞCH), 20.0 (d, J 33 Hz, PMe₃), 13.1 (s, ΞCCH_3); i.r. (KBr) $v_{C=C}$ v_{C} (C ΞC) 1890 cm⁻¹.

PMe₃), 13.1 (s, \equiv CCH₃); i.r. (KBr) $v_{C}\equiv c$ v(C \equiv C) 1890 cm⁻¹. (C₅H₅)(PMe₃)₂Ru(η^2 -HC \equiv CH)+ PF₆^{-:} ¹H n.m.r. (CD₃CN) δ 5.02 (s, 5H, C₅H₅), 4.98 (t, J_{PH} 7.2 Hz, 2H, \equiv CH), 1.47 ('d, ' $^2J_{PH}$ + $^4J_{PH}$ = 9.7 Hz, 18H, PMe₃); ¹³C (¹H) [(CD₃)₂CO, 0.07 M Cr(acac)₃, -23 °C] δ 87.2 (s, C₅H₅), 62.4 (s, \equiv CH), 20.3 (apparent triplet, observed J = $^1J_{PC}$ + $^3J_{PC}$ = 17.5 Hz); i.r. (KBr) v(C \equiv C) 1748 cm⁻¹.

‡ $(C_5H_5)(PMe_3)_2Ru=C=C(H)(CH_3)^+PF_6^-$: 1H n.m.r. (CD_3CN) δ 5.41 (s, 5H, C_5H_5), 4.31 (qt, $^3J_{HH}$ 7.6, $^4J_{PH}$ 2.3 Hz, 1H, CH), 1.77 (d, $^3J_{HH}$ 7.6 Hz, 3H, CH₃), 1.56 ('filled in doublet,' separation between outer lines = $^2J_{PH}$ + $^4J_{PH}$ = 10.3 Hz, 18H, PMe₃); $^{13}C\{^1H\}$ n.m.r. $[CD_3CN, 0.07 \text{ m Cr}(acac)_3]$ δ 347.9 (br. s, Ru=C), 103.4 (s, Ru=C=C), 91.7 (s, C_5H_5), 23.0 (apparent triplet, observed $J = ^1J_{PC} + ^3J_{PC} = 18$ Hz, PMe₃), 4.5 (s, CH₃); i.r. (MeCN) v(CC) 1695, 1662 cm⁻¹; visible (MeCN) λ_{max} 478 nm, ϵ 62 dm³ mol⁻¹ cm⁻¹.

(C₅H₅)(PMe₃)₂Ru=C=CH₂+PF₆⁻: ¹H n.m.r. (CD₃CN) δ 5.43 (s, 5H, C₅H₅), 3.78 (t, ⁴J_{PH} 2.4 Hz, 2H, CH₂), 1.57 ('d,' ²J_{PH} + ⁴J_{PH} = 10.4 Hz, 18H, PMe₃); ¹³C{¹H} [CD₃CN, 0.07 M Cr(acac)₃] δ 343.9 (br. s, Ru=C), 92.7 (s, Ru=C=CH₂), 92.0 (s, C₅H₅), 22.3 ('t,' ¹J_{PC} + ³J_{PC} = 19 Hz, PMe₃); i.r.(CH₂Cl₂) v(CC) 1633 cm⁻¹; visible (MeCN)

 λ_{max} 488 nm; ϵ 55 dm³ mol⁻¹ cm⁻¹.

Scheme 2

 η^2 -alkynes to vinylidene complexes.⁶ A similar intermediate might be possible for the $(C_5H_5)(PMe_3)_2Ru(HC\equiv CMe)^+$ to $(C_5H_5)(PMe_3)_2Ru=C=C(H)Me^+$ rearrangement, and would be consistent with the relatively low entropy of activation. However, the $18e^-$ cationic complexes studied here would be less likely to facilitate the intramolecular oxidative addition required to convert an η^2 -alkyne complex into a alkynylhydride, compared to the neutral, electronically unsaturated complexes studied by Werner. Further experiments are in progress to discern between this and other plausible mechanisms.

Scheme 3

At higher temperatures (80—110 °C, in sealed tubes) in acetonitrile, the metal vinylidene complex $(C_5H_5)(PMe_3)_2$ -Ru=C=C(H)Me+ PF₆- regenerates HC=CMe in high yield; acetonitrile replaces the vacant co-ordination site created by loss of the vinylidene ligand, forming $(C_5H_5)(PMe_3)_2$ -Ru(MeCN)+ PF₆-.7 This reaction also exhibits clean first-order kinetics; activation parameters of $\Delta H^{\ddagger} = 26.8 \pm 0.7$ kcal mol⁻¹ and $\Delta S^{\ddagger} = -4.9 \pm 1.9$ cal K⁻¹ mol⁻¹ were determined.

The η^2 -acetylene complex $(C_5H_5)(PMe_3)_2Ru(HC\equiv CH)^+$ PF₆^{-†} was isolated from a reaction similar to that used for the synthesis of the analogous n²-methylacetylene complex.§ Vinylidene complex $(C_5H_5)(PMe_3)_2Ru=C=CH_2+PF_6-\ddagger$ was from the reaction of Me₃SiC=CH $(C_5H_5)(PMe_3)_2RuCl$ in the presence of NH_4PF_6 (Scheme 2). While this complex can be isolated in pure form soon after it precipitates from the methanol solution, it reacts slowly with methanol to give the carbene complex (C₅H₅)(PMe₃)₂Ru=C-(OMe)Me+ PF_6^- . Deprotonation of $(C_5H_5)(PMe_3)_2$ -Ru=C=CH₂+ by KOBu^t in tetrahydrofuran (THF) gave $(C_5H_5)(PMe_3)_2Ru-C\equiv CH.$ The rearrangement $(C_5H_5)(PMe_3)_2Ru(HC=CH)^+$ to $(C_5H_5)(PMe_3)_2Ru=C=CH_2^+$ is significantly slower than the $(C_5H_5)(PMe_3)_2Ru(HC\equiv CMe)^+$ $(C_5H_5)(PMe_3)_2Ru=C=C(H)Me^+$ rearrangement. For at 40°C example, $t_{\frac{1}{2}}$ for the isomerization $(C_5H_5)(PMe_3)_2Ru(HC\equiv CMe)^+$ to $(C_5H_5)(PMe_3)_2Ru=-$ C=C(H)Me+ is 5.5 min, while the half-life for the analogous $(C_5H_5)(PMe_3)_2Ru(HC\equiv CH)^+$ rearrangement of $(C_5H_5)(PMe_3)_2Ru=C=CH_2+$ is over 5 h at 60 °C. The kinetics of the latter reaction are complicated by formation of $(C_5H_5)(PMe_3)_2Ru(MeCN)^+$ (Scheme 3). This acetonitrile complex appears to be formed in competition with $(C_5H_5)(PMe_3)_2Ru=C=CH_2^+$ rather than in a secondary reaction of it since preliminary studies indicate that the formation $(C_5H_5)(PMe_3)_2Ru(MeCN)^+$ $(C_5H_5)(PMe_3)_2$ from Ru=C=CH₂+ is very slow $(t_i > 1 \text{ day at } 90 \,^{\circ}\text{C})$.

This research was carried out at Brookhaven National Laboratory under contract DE-AC02-76CH00016 with the United States Department of Energy and supported by its Division of Chemical Sciences, Office of Basic Energy

[§] N.m.r. and i.r. spectra of $(C_5H_5)(PMe_3)_2Ru(HC\equiv CH)^+$ and $(C_5H_5)(PMe_3)_2Ru=C=CH_2^+$ suggest that the product previously characterized⁵ as $(C_5H_5)(PMe_3)_2Ru=C=CH_2^+$ was actually $(C_5H_5)(PMe_3)_2Ru(HC\equiv CH)^+$.

Sciences. Helpful discussions with Professor J. L. Templeton are gratefully acknowledged.

Received, 27th July 1988; Com. 8/030661

References

1 R. P. Durán, V. T. Amorebieta, and A. J. Colussi, J. Am. Chem. Soc., 1987, 109, 3154.

- 2 M. I. Bruce and A. G. Swincer, Adv. Organomet. Chem., 1983, 22, 59
- 3 Y. Osamura, H. F. Schaefer, S. K. Gray, and W. H. Miller, *J. Am. Chem. Soc.*, 1981, **103**, 1904.
- 4 R. M. Bullock, J. Am. Chem. Soc., 1987, 109, 8087.
- 5 M. I. Bruce, F. S. Wong, B. W. Skelton, and A. H. White, J. Chem. Soc., Dalton Trans., 1982, 2203.
- 6 A. Höhn, H. Otto, M. Dziallas, and H. Werner, J. Chem. Soc., Chem. Commun., 1987, 852; F. J. G. Alonso, A. Höhn, J. Wolf, H. Otto, and H. Werner, Angew. Chem., Int. Ed. Engl., 1985, 24, 406.
- 7 M. I. Bruce, F. S. Wong, B. W. Skelton, and A. H. White, J. Chem. Soc., Dalton Trans., 1981, 1398.