Rearrangement of a Metal (q*-Alkyne) Complex to a Metal Vinylidene and Subsequent Reaction of the Metal Vinylidene to Regenerate the Alkyne

R. Morris Bullock

Department of Chemistry, Brookhaven National Laboratory, Upton, NY I 1973 U.S.A.

The η^2 -alkyne complex $(C_5H_5)(PMe_3)_2Ru(HC\equiv CMe)+PF_6^-$, which was isolated from a reaction of HC \equiv CMe with $(C_5H_5)(PMe_3)_2$ RuCl, undergoes first-order rearrangement to give $(C_5H_5)(PMe_3)_2$ Ru=C=C(H)Me+ PF₆-; at higher temperatures in MeCN, this vinylidene complex cleanly regenerates HC=CMe and forms $(C_5H_5)(PMe_3)$ ₂Ru(MeCN)⁺ PF_6^- .

The rearrangement of acetylene to vinylidene $(H_2C=C:$) requires temperatures in excess of $500^{\circ}C$,¹ but the rearrangement of metal η^2 -alkyne complexes occurs under mild conditions and provides a convenient route to metal vinylidenes.2 Free vinylidene rearranges to acetylene on a picosecond time-scale;³ organometallic analogues of this reaction have been briefly mentioned,⁴ but are not well known. This communication reports the first organometallic system which demonstrates conversion of a free alkyne through isolable q2-alkyne and metal vinylidene complexes, and then back into the free alkyne.

The η^2 -alkyne complex $(C_5H_5)(PMe_3)_2Ru(HC\equiv CMe)^+$ PF_6 ⁺⁺ precipitates as a pale yellow powder when HC \equiv CMe is bubbled through a methanol solution of $(C_5H_5)(PMe_3)_2RuCl$ containing excess of NH_4PF_6 at room temperature for 15 min (Scheme 1). This complex rearranges to the previously reported⁵ (C₅H₅)(PMe₃)₂Ru=C=C(H)Me+ PF₆- \pm in methanol or acetonitrile. The kinetics of this rearrangement were determined by monitoring the rate of appearance of the λ_{max}
= 478 nm band of $(C_5H_5)(PMe_3)_2Ru=C=C(H)Me^+PF_6^-$. Evaluation of the temperature dependence of the first-order rate constants obtained at six temperatures from 15 to 40 "C in MeCN gave the activation parameters $\Delta H^{\ddagger} = 23.4 \pm 0.3$ kcal mol⁻¹ and $\Delta S^{\ddagger} = 3.9 \pm 0.9$ cal K⁻¹ mol⁻¹ (cal = 4.184 J). Werner and co-workers have isolated alkynyl-hydride complexes which are intermediates in the conversion of Rh and Ir

 \uparrow (C₅H₅)(PMe₃)₂Ru(η ²-HC=CMe)⁺ PF₆⁻: ¹H n.m.r. (CD₃CN) δ 5.02 $4J_{\text{HH}}$ 2.4, J_{PH} 0.6 Hz, 3H, \equiv CCH₃), 1.47 ('filled-in doublet,' separation between outer lines = ${}^{2}J_{\text{PH}} + {}^{4}J_{\text{PH}} = 9.5$ Hz, 18H, PMe₃); ¹³C{¹H} $[(CD₃)₂CO, 0.07$ M Cr(acac)₃ (acac = pentane-1,4-dionato), -48 °C] $(s, 5H, C_5H_5)$, 4.02 (tq, J_{PH} 10.5, $4J_{HH}$ 2.4 Hz, 1H, \equiv CH), 2.44 (dt, 6 87.1 **(s,** CSHS), 73.0 **(s,** =CCH,), 53.6 **(s, ECH),** 20.0 (d, *J* 33 Hz,

PMe₃), 13.1 (s, ≡CCH₃); i.r. (KBr) v_{C≡C} v(C≡C) 1890 cm⁻¹.
(C₅H₅)(PMe₃)₂Ru(η²-HC≡CH)+ PF₆-: 1H n.m.r. (CD₃CN) δ 5.02 9.7 Hz, 18H, PMe₃); ¹³C{¹H} [(CD₃)₂CO, 0.07 M Cr(acac)₃, -23 °C] δ 87.2 (s, C₅H₅), δ 2.4 (s, \equiv CH), 20.3 (apparent triplet, observed *J* = $^{1}J_{PC}$ + $^{3}J_{PC}$ = 17.5 Hz); i.r. (KBr) $v(\overrightarrow{C=C})$ 1748 cm⁻¹. $(s, 5H, C_5H_5), 4.98$ (t, J_{PH} 7.2 Hz, 2H, \equiv CH), 1.47 ('d,' ${}^2J_{PH}$ + ${}^4J_{PH}$ =

^{\$} **(C5H5)(PMe3)2R~=C=C(H)(CH3)+PF6-** : IH n.m.r. (CD,CN) $6\,5.41\,(\text{s}, 5\,\text{H}, \tilde{\text{C}_5\text{H}_5})$, 4.31 $(\text{qt},\frac{3J_{\text{HH}}}{7.6},\frac{4J_{\text{PH}}}{9.1}\text{2.3 Hz}, 1\,\text{H}, \text{CH})$, 1.77 (d, d) $3J_{HH}$ 7.6 Hz, 3H, CH₃), 1.56 ('filled in doublet,' separation between outer lines = $^{2}J_{\text{PH}}$ + $^{4}J_{\text{PH}}$ = 10.3 Hz, 18H, PMe₃); ¹³C{¹H} n.m.r. [CD,CN, 0.07~ Cr(acac),] 6 347.9 (br. **s,** Ru=C), 103.4 **(s,** Ru=C=C), 91.7 (s, C₅H₅), 23.0 (apparent triplet, observed $J = V_{PC} + 3J_{PC} = 18$ Hz, PMe₃), 4.5 (s, CH₃); i.r. (MeCN) v(CC) 1695, 1662 cm⁻¹; visible (MeCN) λ_{max} 478 nm, ε 62 dm³ mol⁻¹ cm⁻¹.

 $(C_5H_5)(PMe_3)_2Ru=C=CH_2+PF_6-$: ¹H n.m.r. (CD₃CN) δ 5.43 (s, 10.4 Hz, 18H, PMe₃); ¹³C{¹H} [CD₃CN, 0.07_M Cr(acac)₃] δ 343.9 (br. **s,** Ru=C), 92.7 **(s,** Ru=C=CH,), 92.0 **(s,** C5H5), 22.3 ('t,' **lJpc** + $3J_{\text{PC}} = 19 \text{ Hz}, \text{ PMe}_3$); i.r.(CH₂Cl₂) v(CC) 1633 cm⁻¹; visible (MeCN) λ_{max} 488 nm; ε 55 dm³ mol⁻¹ cm⁻¹. $5H, \check{C}_5\check{H}_5$), $3.78\check{t}_1$, $4J_{\text{PH}}$ $2.4\check{H}_2$, $2H, \text{CH}_2$), $1.57\check{t}_1$ ($d, \check{t}_2J_{\text{PH}}$ + $4J_{\text{PH}}$ =

Scheme 2

 $\mathscr{F}_{\mathcal{C}}$

٠н

Me,

Me

Me,

 $Me₃$

At higher temperatures (80-110 °C, in sealed tubes) in acetonitrile, the metal vinylidene complex $(C_5H_5)(PMe_3)_2$ -Ru=C=C(H)Me+ PF_6 - regenerates HC=CMe in high yield; acetonitrile replaces the vacant co-ordination site created by loss of the vinylidene ligand, forming $(C_5H_5)(PMe_3)_2$ - $Ru(MeCN)^+$ PF_6^- .7 This reaction also exhibits clean firstorder kinetics; activation parameters of $\Delta H^{\ddagger} = 26.8 \pm 0.7$ kcal mol⁻¹ and $\Delta S^{\ddagger} = -4.9 \pm 1.9$ cal K⁻¹ mol⁻¹ were determined. The η^2 -acetylene complex $(C_5H_5)(PMe_3)_2Ru(HC\equiv CH)^+$ $PF₆$ ⁻⁺ was isolated from a reaction similar to that used for the synthesis of the analogous η^2 -methylacetylene complex. § Vinylidene complex $(C_5H_5)(PMe_3)_2Ru=C=CH_2^+PF_6^{-}$ was isolated from the reaction of $Me₃SiC\equiv CH$ with $(C_5H_5)(PMe_3)_2RuCl$ in the presence of NH_4PF_6 (Scheme 2). While this complex can be isolated in pure form soon after it precipitates from the methanol solution, it reacts slowly with methanol to give the carbene complex $(C_5H_5)(PMe_3)_2Ru=C-(OMe)Me^+$ PF_6^- . Deprotonation of $(C_5H_5)(PMe_3)_2$ - PF_6 -. Deprotonation of $(C_5H_5)(PMe_3)_2$ - $Ru=C=CH_2$ ⁺ by KOBu^t in tetrahydrofuran (THF) gave $(C_5H_5)(PMe_3)_2Ru-C\equiv CH$. The rearrangement of $(C_5H_5)(PMe_3)_2Ru(HC\equiv CH)^+$ to $(C_5H_5)(PMe_3)_2Ru=C=CH_2^+$ is significantly slower than the $(C_5H_5)(PMe_3)_2Ru(HC\equiv CMe)^+$ to $(C_5H_5)(PMe_3)_2Ru=C=C(H)Me^+$ rearrangement. For example, at $40^{\circ}C$ t_1 for the isomerization of $(C_5H_5)(PMe_3)_2Ru(HC\equiv CMe)^+$ to $(C_5H_5)(PMe_3)_2Ru=$ C=C(H)Me+ is *5.5* min, while the half-life for the analogous rearrangement of $(C_5H_5)(PMe_3)_2Ru(HC\equiv CH)^+$ to $(C_5H_5)(PMe_3)_2Ru=C=CH_2^+$ is over 5 h at 60 °C. The kinetics of the latter reaction are complicated by formation of $(C_5H_5)(PMe_3)_2Ru(MeCN)^+$ (Scheme 3). This acetonitrile complex appears to be formed in competition with $(C_5H_5)(PMe_3)_2Ru=C=CH_2^+$ rather than in a secondary reaction of it since preliminary studies indicate that the formation of $(C_5H_5)(PMe_3)_2Ru(MeCN)$ from $(C_5H_5)(PMe_3)_2$ -Ru=C=CH₂⁺ is very slow (t_i > 1 day at 90 °C).

This research was carried out at Brookhaven National Laboratory under contract DE-AC02-76CH00016 with the United States Department of Energy and supported by its Division of Chemical Sciences, Office of Basic Energy

[§] N.m.r. and i.r. spectra of $(C_5H_5)(PMe_3)_2Ru(HC\equiv CH)^+$ and $(C_5H_5)(PMe_3)_2Ru=C=CH_2^+$ suggest that the product previously characterized⁵ as $(C_5H_5)(PMe_3)_2Ru=C=CH_2^+$ was actually $(C_5H_5)(PMe_3)_2Ru(HC\equiv CH)^+$.

Sciences. Helpful discussions with Professor J. L. Templeton are gratefully acknowledged.

Received, 27th July 1988; Corn. 8/030661

References

- 1 R. **P.** Durin, V. T. Amorebieta, and A. J. Co1ussi.J. *Am. Chem.* 7 **SOC.,** 1987, 109, 3154.
- 2 M. I. Bruce and A. G. Swincer, *Adv. Organomet. Chem.,* 1983,22, 59.
- 3 **Y.** Osamura, H. F. Schaefer, **S.** K. Gray, and W. H. Miller, *J. Am. Chem. SOC.,* 1981, 103, 1904.
- 4 R. **M. Bullock,** *J. Am. Chem. Soc.,* 1987,109, 8087.
- *5* **M.** I. Bruce, F. **S.** Wong, **B.** W. Skelton, and **A.** H. White, *J. Chem.* **SOC.,** *Dalton Trans.* , 1982, 2203.
- 6 A. Hohn, H. Otto, M. Dziallas, and H. Werner, *J. Chem. SOC., Chem. Commun.,* 1987,852; F. **J.** G. Alonso, A. Hohn, J. Wolf, H. Otto, and H. Werner, *Angew. Chem., Int. Ed. Engl.,* 1985,24,406.
- **M.** I. Bruce, F. **S.** Wong, B. W. Skelton, and A. H. White, *J. Chem.* **SOC.,** *Dalton Trans.,* 1981, 1398.