## Facile Carbon–Carbon and Carbon–Phosphorus Bond-Forming and -Breaking Processes in Metal Chain Clusters: X-Ray Crystal Structures of $[W_3Rh_2(\mu-CO)_2(\mu-CMe)\{\mu-C(Me)C(O)\}(\mu-PPh_2)_2(\mu_3-CMe)(CO)_2(\eta-C_5H_5)_3]$ and $[W_3Rh_2(\mu-CO)_3(\mu-CMe)\{\mu-C(Me)PPh_2\}(\mu-PPh_2)(\mu_3-CMe)(CO)_2(\eta-C_5H_5)_3]$

Simon J. Davies, Judith A. K. Howard, Massimino U. Pilotti, and F. Gordon A. Stone

Department of Inorganic Chemistry, The University of Bristol, Bristol BS8 1TS, U.K.

Using the reagents  $[W(\equiv CMe)(CO)_2(\eta-C_5H_5)]$  and  $[Rh_2(\mu-PPh_2)_2(cod)_2]$  (cod = cyclo-octa-1,5-diene), tetra- and penta-nuclear tungsten-rhodium chain clusters have been prepared and the structures of  $[W_3Rh_2(\mu-CO)_2(\mu-CMe)\{\mu-C(Me)C(O)\}(\mu-PPh_2)_2(\mu_3-CMe)(CO)_2(\eta-C_5H_5)_3]$  and  $[W_3Rh_2(\mu-CO)_3(\mu-CMe)\{\mu-C(Me)PPh_2\}(\mu-PPh_2)(\mu_3-CMe)(CO)_2(\eta-C_5H_5)_3]$  have been determined by X-ray diffraction; the latter contains a  $\lambda^5$ -phospha-alkyne ligand bridging a W-Rh bond.

We have recently reported rational synthetic procedures for the step-wise synthesis of metal cluster complexes containing chains of metal atoms.<sup>1</sup> In these species bonds between molybdenum or tungsten and nickel or platinum are bridged by alkylidyne groups. In extending the methodology to tungsten-rhodium systems we have discovered new metal chain-type clusters, as well as facile migratory processes involving ethylidyne, diphenylphosphido, and carbonyl ligands. Carbon-carbon and carbon-phosphorus bond-making and -breaking reactions afford species in which ketenyl or



 $\lambda^5$ -phospha-alkyne fragments bridge tungsten-rhodium bonds.

Treatment of  $[Rh_2(\mu-PPh_2)_2(cod)_2]^2$  (cod = cyclo-octa-1,5diene) in thf (tetrahydrofuran) at room temperature with two equivalents of  $[W(\equiv CMe)(CO)_2(\eta-C_5H_5)]$  rapidly affords the tetranuclear metal complex (1).<sup>+</sup> The latter isomerises in solution to give (2), a process involving transfer of a  $\mu$ -PPh<sub>2</sub> group from a Rh–Rh to a Rh–W bond, and attack of CO on a  $\mu$ -CMe ligand to afford a ketenyl fragment. If CH<sub>2</sub>Cl<sub>2</sub>

Compound (2), green crystals, n.m.r. (two separable diastereoisomers, *ca.* 1:1, data given for one species); <sup>13</sup>C-{<sup>1</sup>H},  $\delta$  301.2 [dd,  $\mu_3$ -C,  $J_{RhC}$  19, 10], 253.5 [d,  $\mu$ -CO,  $J_{RhC}$  24], 225.5 (WCO), 211.0 [d,  $\mu$ -C(Me)C(O),  $J_{PC}$  6], 192.5 [dd, RhCO,  $J_{RhC}$  67,  $J_{PC}$  95] and 118.9 [d,  $\mu$ -C(Me)C(O),  $J_{RhC}$  18]; <sup>31</sup>P-{<sup>1</sup>H},  $\delta$  164.7 [d,  $J_{RhP}$  137] and 159.8 [d,  $J_{RhP}$  76].

Compound (4), red crystals, n.m.r.: <sup>13</sup>C-{<sup>1</sup>H},  $\delta$  297.5 [dd,  $\mu_3$ -C,  $J_{RhC}$  28, 16], 257.0 [d,  $\mu$ -CO,  $J_{RhC}$  29], 253.0 [d,  $\mu$ -CO,  $J_{RhC}$  37], 223.1 [d, WCO,  $J_{PC}$  33], 197.0 [dd, RhCO,  $J_{RhC}$  and  $J_{PC}$  77, 56], 195.6 [dd, RhCO,  $J_{RhC}$  63,  $J_{PC}$  11], 141.8 [dd,  $\mu$ -C(Me)PPh<sub>2</sub>,  $J_{RhC}$  and  $J_{PC}$  35, 30] and 28.0 [d,  $\mu$ -C(Me)PPh<sub>2</sub>,  $J_{PC}$  4]; <sup>31</sup>P-{<sup>1</sup>H},  $\delta$  158.9 [d,  $\mu$ -PPh<sub>2</sub>,  $J_{RhP}$  78] and -50.6 [s,  $\mu$ -C(Me)PPh<sub>2</sub>].

Compound (5), green or brown crystals,  $v_{max}$ (CO) at 2037vs, 1983m, 1886m, and 1737m(br) cm<sup>-1</sup>; n.m.r. (two diastereoisomers, *ca.* 2:1, data given for major isomer) <sup>13</sup>C-{<sup>1</sup>H},  $\delta$  332.7 [d,  $\mu$ -C,  $J_{RhC}$  25], 292.9 [d of d,  $\mu_3$ -C,  $J_{RhC}$  29, 15], 255.2 [d,  $\mu$ -CO,  $J_{PC}$  24].

Compound (7), red crystals,  $v_{max}$ (CO) at 1914vs, 1786m, 1737m, and 1715m cm<sup>-1</sup>; <sup>31</sup>P-{<sup>1</sup>H} n.m.r.,  $\delta$  169.5 [d,  $\mu$ -PPh<sub>2</sub>,  $J_{RhP}$  127] and -29.6 [s,  $\mu$ -C(Me)PPh<sub>2</sub>].

Compound (8), brown crystals,  $v_{max}$ (CO) at 1941s, 1881m, 1764m and 1732m cm<sup>-1</sup>; n.m.r.: <sup>13</sup>C-{<sup>1</sup>H} (at -40 °C),  $\delta$  354.4 [d,  $\mu$ -C,  $J_{RhC}$  35], 338.4 ( $\mu$ -C), and 306.9 [dd,  $\mu_3$ -C,  $J_{RhC}$  29, 19]; <sup>31</sup>P-{<sup>1</sup>H},  $\delta$  174.3 [d,  $J_{RhP}$  129,  $J_{WP}$  430] and 155.8 [d,  $J_{RhP}$  136,  $J_{WP}$  415].

solutions of (2) are treated with CO the compound (3) is formed quantitatively. The latter on refluxing in thf for *ca.* 10 mins affords a chromatographically separable mixture of compounds (4) and (5). With longer periods of reflux the sole product is (5) *via* the intermediacy of (4). The transformation of (3) into (4) involves an unprecedented conversion of  $\mu$ -PPh<sub>2</sub> and  $\mu$ -C(Me)C(O) groups into  $\mu$ -CO and  $\mu$ -C(Me)PPh<sub>2</sub> ligands at a dimetal centre.

These reactions have been extended to pentanuclear tungsten-rhodium compounds. Thus treatment of  $[Rh_2(\mu PPh_2)_2(cod)_2]$  with an excess of  $[W(\equiv CMe)(CO)_2(\eta - C_5H_5)]$  in thf affords, via (2), the complex (6). Formally the latter is produced by replacement of the CO group attached to the Rh atom in (2) by a molecule terminal of  $[W(\equiv CMe)(CO)_2(\eta - C_5H_5)]$  acting as pseudo-alkyne.<sup>3</sup> Compound (6) in thf rearranges after several hours to yield the isomer (7). The structures of (6) and (7) have been established by X-ray diffraction (Figures 1 and 2).<sup>‡</sup> The presence of the  $\mu$ - $\lambda$ <sup>5</sup>-phospha-alkyne fragment in (7) is confirmed, and as far as we are aware compounds (4) and (7) are the first examples of this ligand bridging a dimetal centre, although mononuclear metal complexes of  $\lambda^5$ -phospha-alkynes are known.<sup>4</sup> Just as

Crystal data for (7):  $C_{50}H_{44}O_5P_2Rh_2W_3$ , M = 1543.6, orthorhombic, space group *Pbca* (no. 61), a = 19.091(5), b = 22.245(5), c = 21.804(5) Å, U = 9335(2) Å<sup>3</sup>, Z = 8,  $D_c = 2.18$  g cm<sup>-3</sup>, F(000) = 5806,  $\mu$ (Mo-K<sub> $\alpha$ </sub>) 83.22 cm<sup>-1</sup>, R = 0.051 ( $R_w = 0.049$ ), for 3792 unique absorption corrected intensities [ $F \ge 6\sigma(F)$ , data collection as for (6)]. The structure was solved by direct methods. Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

<sup>†</sup> All compounds have been fully characterised by analysis and by spectroscopy. Only selected spectroscopic data are given [i.r. measured in thf, n.m.r. measured in  $CD_2Cl_2$  (<sup>1</sup>H, <sup>31</sup>P-{<sup>1</sup>H}) or  $CD_2Cl_2$ - $CH_2Cl_2$  (<sup>13</sup>C-{<sup>1</sup>H}), coupling constants in Hz, chemical shifts are in p.p.m. and are relative to SiMe<sub>4</sub> (<sup>13</sup>C-{<sup>1</sup>H}) or 85% H<sub>3</sub>PO<sub>4</sub> (external) for <sup>31</sup>P-{<sup>1</sup>H}]. Compond (1), dark green crystals,  $v_{max}(CO)$  at 1962vs, 1931vs, 1872m(br), and 1838m(br) cm<sup>-1</sup>; n.m.r.: <sup>13</sup>C-{<sup>1</sup>H}), 6 349.1 [dd,  $\mu$ -C,  $J_{RhC}$  37,  $J_{PC}$  7], 346.5 [dd,  $\mu$ -C,  $J_{RhC}$  29,  $J_{PC}$  14], 227.4, 218.5, 214.0 (WCO), and 199.5 [d, RhCO,  $J_{RhC}$  81]; <sup>31</sup>P-{<sup>1</sup>H},  $\delta$  271.2 [td,  $J_{RhP}$  132, 103;  $J_{PP}$  132] and 162.2 [dd,  $J_{RhP}$  98,  $J_{PP}$  132].

<sup>‡</sup> Crystal data for (6): C<sub>50</sub>H<sub>44</sub>O<sub>5</sub>P<sub>2</sub>Rh<sub>2</sub>W<sub>3</sub>·2CH<sub>2</sub>Cl<sub>2</sub>, M = 1714.1, triclinic, space group  $P\overline{1}$  (no. 2), a = 11.523(2), b = 14.066(5), c = 25.144(9) Å,  $\alpha = 109.54(3)$ ,  $\beta = 105.46(2)$ ,  $\gamma = 121.99(2)^\circ$ , U = 2764(1) Å<sup>3</sup>, Z = 2,  $D_c = 2.06$  g cm<sup>-3</sup>, F(000) = 1620,  $\mu$ (Mo- $K_\alpha$ ) = 72.16 cm<sup>-1</sup>, R = 0.106 ( $R_w = 0.105$ ) for 3283 unique absorption corrected intensities [298 K, θ-2θ scans,  $2\theta \le 50^\circ$ ,  $F \ge 8\sigma(F)$ , Mo-K<sub>α</sub> ( $\overline{\lambda} = 0.710.69$  Å)]. Data collected on a Nicolet P3m diffractometer and structure was solved by heavy-atom difference-Fourier methods with refinement by blocked-cascade least squares. Two solvent molecules co-crystallise in the lattice with positional disorder.



(5)







Figure 1. Molecular structure of  $[W_3Rh_2(\mu-CO)_2(\mu-CMe){\mu-C-(Me)C(O)}(\mu-PPh_2)_2(\mu_3-CMe)(CO)_2(\eta-C_5H_5)_3]$  (6). Bond lengths and angles: Rh(1)–W(2) 2.791(6), Rh(2)–W(3) 2.813(4), Rh(1)–W(1) 2.696(5), Rh(2)–W(2) 2.664(5), Rh(1)  $\cdots$  Rh(2) 3.115(4), W(3)–C(4) 2.27(5), W(3)–C(30) 2.03(4), Rh(2)–C(30) 2.03(7), W(2)–P(1) 2.36(1), W(3)–P(2) 2.36(2), Rh(1)–P(1) 2.24(2), Rh(2)–P(2) 2.28(1) Å; W(1)–C(1)–O(1) 162(4), Rh(1)–C(1)–O(1) 115(4), W(2)–C(3)–O(3) 165(6), Rh(2)–C(3)–O(3) 110(4)°.

(4) readily releases CO to afford (5), with cleavage of the C–P bond in the  $\mu$ - $\lambda$ <sup>5</sup>-C(Me)PPh<sub>2</sub> ligand, so (7) on prolonged refluxing (*ca.* 24 h) affords (8).

It is evident from these studies that unsaturated metal-chain clusters have a marked propensity to activate CO, CMe, and PPh<sub>2</sub> groups, and may well have the potential to promote reactions of other ligands as well.

We thank the  $\tilde{S}.E.R.C.$  for research studentships (to S. J. D. and M. U. P.)

Received, 27th September 1988; Com. 8/03833C





Figure 2. Molecular structure of  $[W_3Rh_2(\mu-CO)_3(\mu-CMe)\{\mu-C-(Me)PPh_2\}(\mu-PPh_2)(\mu_3-CMe)(CO)_2(\eta-C_5H_5)_3]$  (7). Bond lengths and angles: Rh(1)–W(1) 2.678(2), Rh(2)–W(2) 2.609(2), Rh(1)–W(2) 2.803(2), Rh(2)–W(3) 2.786(2), W(3)–P(2) 2.382(6), W(3)–C(30) 2.12(2), Rh(2)–C(30) 2.03(2), Rh(1)–P(1) 2.26(1), W(2)–P(1) 2.33(1) Å; W(1)–C(1)–O(1) 164(2), Rh(1)–C(1)–O(1) 117(2), W(2)–C(3)–O(3) 166(2), Rh(2)–C(3)–O(3) 118(1), W(3)–C(4)–O(4) 151(2), Rh(2)–C(4)–O(4) 123(2)°.

## References

- 1 S. J. Davies, G. P. Elliott, J. A. K. Howard, C. M. Nunn, and F. G. A. Stone, *J. Chem. Soc.*, *Dalton Trans.*, 1987, 2177; S. J. Davies and F. G. A. Stone, *ibid.* in the press.
- 2 P. E. Kreter and D. W. Meek, Inorg. Chem., 1983, 22, 319.
- 3 R. Hoffmann, Angew. Chem., Int. Ed. Engl., 1982, 21, 711.
- 4 V. C. Gibson, C. E. Graimann, P. M. Hare, M. L. H. Green, J. A. Bandy, P. D. Grebenik, and K. Prout, J. Chem. Soc., Dalton Trans., 1985, 2025; T. P. Kee, V. C. Gibson, and W. Clegg, J. Organomet. Chem., 1987, 325, C14.