The Role of R₃P–M Bond Bending in Determining the Stereochemical Features of Tertiary Phosphine Complexes of Transition Metals

John Powell

Department of Chemistry, University of Toronto, Toronto, Ontario M5S 1A1, Canada

For *cis*- and *trans*-MXY(PR₃)₂ 'planar' systems (M = Ni, Pd, Pt) the large deviations of \angle -PMP bond angles from ideal {defined as $\alpha = (\angle$ -PMP - 90°) *cis*; (180° - \angle -PMP) *trans*} are shown to correlate linearly with the average R₃P tilt angle $\beta_{avg.}$ [$\beta = (180° - \angle$ -C_TPM) where C_T = the centroid of the (α -C)₃ unit of a R₃P ligand]: the data are best rationalised by assuming that unfavourable electron repulsions involving P(α -C=)₃ units and neighbouring ligands are minimized by R₃P-M bond bending.

A continuing conundrum in co-ordination chemistry is the fact that the large distortions from ideal co-ordination geometries frequently observed in R_3P complexes show no correlation with the R_3P cone angle.^{1,2} For example the $\angle PPtP$ bond angle data for the five cations $PtH(PR_3)_3^+$ (Table 1)³ are very similar even though the R₃P cone angles vary from 118° (PMe_3) to 170° (PCy_3) . This observation is understandable if the major repulsion terms controlling *L*PPtP angles are ones involving the electrons associated with the $P(\alpha-C\equiv)_3$ units[†] and those of neighbouring ligands and that such repulsions lead to R₃P-M bond bending, (Figure 1). Evidence of the influence of the P(α -C=)₃ moiety on the magnitude of \angle PPtP is the general observation^{\dagger} that in *cis*-PtXY(PR₃)₂ complexes a staggered conformation of adjacent $P(\alpha - C \equiv)_3$ groups [viewed down the PP axis, e.g. Figure 2a (cogwheel) and 2b] will usually give rise to *PPtP* of *ca*. 98-103°, whilst eclipsed configurations of the type shown in Figure 2c and 2d have \angle PPtP values of *ca.* 106–110°. For example Pt(cycloheptyne)(PPh₃)₂ [\angle PPtP 102.58(3)°] has a distorted staggered

conformation of $P(\alpha-C\equiv)_3$ units whilst Pt(cyclohexyne)(PPh_3)_2 [$_$ PPtP 109.54(5)°] has an 'almost eclipsed' conformation of $P(\alpha-C\equiv)_3$'s.⁴ Similarly for the two forms of complex (1) [$_$ PPtP 97.73(5) and 106.2(1)°]⁵ the larger $_$ PPtP is associated with an 'almost eclipsed' conformation of PMe₃ ligands (Figure 2d). Thus changes in $_$ PPtP, which at first may be perceived as a consequence of changes in the steric bulk of PR₃ ligands, may in fact be more a consequence of a change in the conformation of adjacent $P(\alpha-C\equiv)_3$ units. One such example is the pair of complexes $Pt(C_4F_6)(PPh_3)_2$, $_$ PPtP 100.17(4)° [staggered (cogwheel) $P(\alpha-C\equiv)_3$ units: Figure 2a] and $Pt(C_4F_6)(PCy_3)_2$, $_$ PPtP 110.23(6)° [almost eclipsed $P(\alpha-C\equiv)_3$: Figure 2d].⁶

Figure 1. Electron repulsions influencing the co-ordination geometry of R_3P -Pt complexes. C_T = centroid of α -C₃.

[†] The α -C \equiv symbol implies the inclusion of electron density associated with CH and/or CC bonds. Structural features referred to in this communication were obtained by analysis of the relevant structural data taken 'as is' from the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW.

Figure 2. Examples of $P(\alpha-C\equiv)_3$ conformations in *cis*-PtXY(PR₃)₂: (a) and (b) 'staggered' (PPtP \approx 98–103°); (c) eclipsed, and (d) 'almost' eclipsed, (\angle PPtP \approx 106–110°).

Figure 3. Examples of (a) and (b) in-plane 'xy' tilting of R_3P ; (c) and (d) out-of-plane 'z' tilting of R_3P (*i.e.* relative orientations of $P-C_T$).

In R₃P complexes of Pt, $\Sigma \angle CPC$ and $\Sigma \angle PtPC$ are essentially unchanged by the degree of steric crowding² [*i.e.* $P(\alpha-C\equiv)_3$ is not easily compressed]. In contrast individual ∠CPC vary from *ca*. 100 to 108° and individual ∠PtPC from ca. 103 to 125°2⁺ consistent with the concept of P-Pt bond bending. For in-plane (xy) P—Pt bond bending (Figure 3a,b) and out-of-plane (z) bending (Figure 3c) α , the deviation of \angle PPtP from ideal for *cis*- and *trans*-PtXY(PR₃)₂ complexes, should correlate with the average tilt angle, $\beta_{avg.}$, $per\,PR_3.\ddagger[\beta$ = $180^{\circ} - \angle C_T PPt$; (C_T = centroid of ' α - C_3 ') see Figure 1]. Figure 4 shows a plot of α , ($\angle PPtP - 90^{\circ}$), vs. $\bar{\beta}_{avg}$ for $M(C_4F_6)(PR_3)_2$. Similar linear correlations with respect to α vs. $\beta_{avg.}$ plots are observed for a large number of 'planar' complexes of Ni, Pd, and Pt of the type $cis-MX_2(PR_3)_2$ and *trans*-MXY(PR₃)₂ (X_2 , XY = halides, sulphur donor chelate ligands, σ -bonded C ligands *etc.*). Some representative examples are given in Figure 5.§ R₃P–M bond bending can be in the xy sense [Figure 3a, e.g. PtCl₂(PPh₃)₂;⁷ Figure 3b, e.g. $PtCl(PEt_3)_3^+]$,^{3b} the xyz sense [e.g. cis-PtCl₂(PBut₂Ph)₂],⁸ or purely in the z sense [Figure 3c, e.g. $PdCl{C_6H_4-o-}$

§ (a) The α,β data for $MX(PR_3)_3^+$ systems are for the '*trans*-(PR_3)₂ unit'. (b) In PtXR(PR_3)₂ systems xy bending is towards the halide X.

Figure 4. The α vs. β plot for the hexafluorobut-2-yne complexes Pt(C₄F₆)(PR₃)₂.⁶ [P-Pt bond length in Å is given in brackets.]

Table 1. \angle PPtP Bond angle data (°) for [PtH(PR₃)₃]⁺ cations.

	∠P ¹ PtP ²	∠P ² PtP ³	∠P ¹ PtP ³	Ref.
$PtH(PMe_3)_3^+$	100.6	100.7	156.8(1)	3a
$PtH(PEt_3)_3^{+a}$	100.1	101.5	158.4(2)	3b
$PtH(PEt_3)_3^{+a}$	101.2	103.6	155.2(2)	3b
$PtH(PPh_3)_3^+$	99.7	100.6	159.6(2)	3c
$PtH(PCy_3)_2(PPh_3)^{+b}$	101.9	102.8	155.2(2)	3d

^a Two independent molecules in the unit cell. ^b Cy = cyclohexyl.

C(Me)=NNHPh}(PEt₃)₂,⁹ PtClMe(PMePh₂)₂:¹⁰ \angle PMCl is *ca.* 90°]. R₃P–M Bond bending in the +*z*/–*z* sense (Figure 3d) occurs in *trans*-MX₂(PR₃)₂ systems (*e.g.* Figure 5). For complexes of the type MXY(PR₃)₂ the slope $\alpha/\beta_{avg.}$ is *ca.* 1.9 (XY = halides, sulphur donor chelates *etc.*: Figure 5) and *ca.* 2.2 for M(C₄F₆)(PR₃)₂ (Figure 4). For *cis* complexes where X and Y donor atoms are directly bonded to one another (*i.e.* \angle XMY = *ca.* 35–45°) and where X and Y do not have large in-plane substituents close to PR₃ the slope $\alpha/\beta_{avg.}$ is *ca.* 4.0. Examples are MXY(PPh₃)₂ (M = Ni, Pd, Pt; XY = η^2 -alkenes, η^2 -CS₂, η^2 -quinone); [η^2 -MeSCH₂)Pd(PPh₃)₂]⁺;

This suggests that when the electron density associated with the M-X and M-Y bonds is drastically distorted (bent) from the 90° ideal and away from the PR₃ ligands (*n.b.*: \angle XMY is *ca.* 35–45°) the resulting increase in \angle PMP is accommodated in part by a net shift of the electron density close to M and associated with the P-M bonds, away from the 90° ideal position thereby necessitating less tilting of the PR₃ ligands. (*i.e.* the α/β_{avg} ratio is determined at least in part by the

 $[\]ddagger$ (a) The average 'bend angle' of R₃P about a 'pivotal point' on the 'ideal 90° axis' is $1/2 \alpha + \beta_{avg}$. (b) Intermeshing of substituents on neighbouring donor atoms tends to favour in-plane (xy) bending.

Figure 5. $[c = cis; t = trans; \bullet = Pt; \blacktriangle = Ni; \blacksquare = Pd.] \bullet; (1)$ $PtCl(PMe_3)_3^+$, t-PtCl(MeNaphPhSi)(PMe₂Ph)₂, (2) (3) PtCl(PEt₃)₃⁺, (4) c-PtCl₂(PBu¹₂Ph)₂, (5) PtF(<u>PEt₃</u>)₃⁺, (6) c-Pt(<u>C=CPh)₂(PPh₃)₂</u>, (7) t-PtClMe(PMePh₂)₂, (8) $\overline{S(S)_3}$ Pt(PPh₃)₂, (7) t-PtClMe(PMePh₂)₂, (8) $\overline{S(S)_3}$ Pt(PPh₃)₂, (9) $\overline{S(S)_3}$ Pt(Ph₃)₂, (9) $\overline{S(S)_3}$ Pt(Ph₃)₃, (9) $\overline{S(S)_3}$ Pt(P (9) $CH_2(CH_2)_3Pt(PPh_3)_2$, (10) $c-PtCl_2(PPh_3)_2$, (11) c-Pt(cyclopropyl)₂(PMe₂Ph)₂, (12) *t*-PtIMe(PPh₃)₂, (13) *t*-PtClMe(PPh₃)₂, (14) t-PtCl(CH₂CN)(PPh₃)₂, t-PtCl(MeCO)(PPh₃)₂, (15) (16)t-PtI₂(PCy₃)₂, $t-PtCl_2(PCy_3)_2$, ▲; (18) *t*-NiCl(CH₂-(17) $SiMe_3)(PMe_3)_2$, (19) t-NiCl(COSiMe_3)(PMe_3)_2, (20) t-NiCl_2(PCy_3)_2, t-PdCl[C₆H₄-o-C(Me)NNHPh](PPh₃)₂, (21)(22)PdCl(PMe2Ph)3-(23) t-PdCl(CH₂CN)(PPh₃)₂·acetone, (24)t-PdCl(CH₂CN)(PPh₃)₂·MeCN, (25) t-PdCl(CH₂CN)(PPh₃)₂·C₆H₆, (26) t-PdI₂(PPh₃)₂, (27) t-PdCl₂(PPh₃)₂.

relative location of the 'net electron density' of neighbouring donor atoms). The rationalization of \angle PMP data in terms of R₃P-M bond bending without rehybridization of P (cf. Σ \angle CPC data) (i) suggests similar bending at S-M, Cl-M bonds etc.; (ii) accounts for the relative ease of formation of 'M(μ -PR₂)M' systems with \angle MPM of 70-80° yet with \angle RPR angles of ca. 102-108°, values typical of individual PR₃ ligands; (iii) explains the relative ease of formation of 4-membered chelate ring systems containing P(or S etc.) donor atoms; and (iv) is further evidence of the importance of repulsions between proximal electron clouds for the successful rationalization of molecular stereochemistry.¹¹

I thank the Natural Sciences and Engineering Research Council of Canada for financial support and John Irwin for assistance in collecting and tabulating the data.

Received, 2nd August 1988; Com. 8/03165G

References

- 1 C. A. Tolman, Chem. Rev., 1977, 77, 313.
- 2 H. C. Clark and M. J. Hampden-Smith, Coord. Chem. Rev., 1987, 79, 229.
- 3 (a) D. L. Packett, A. Syed, and W. C. Trogler, Organometallics, 1988, 7, 159; (b) D. R. Russell, M. A. Mazid, and P. A. Tucker, J. Chem. Soc., Dalton Trans., 1980, 1737; (c) R. E. Caputo, D. K. Mak, R. D. Willet, S. G. Roundhill, and D. M. Roundhill, Acta Crystallogr., Sect. B., 1977, 33, 215; (d) H. C. Clark, M. J. Dymarski, and J. D. Oliver, J. Organomet. Chem., 1978, 154, C40.
- 4 G. B. Robertson and P. O. Whimp, J. Am. Chem. Soc., 1975, 97, 1051.
- 5 M. Berry, J. A. K. Howard, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1980, 1601.
- 6 (a) B. W. Davis and N. C. Payne, *Inorg. Chem.*, 1974, 13, 1848;
 (b) J. F. Richardson and N. C. Payne, *Can. J. Chem.*, 1977, 55, 3203;
 (c) D. H. Farrar and N. C. Payne, *Inorg. Chem.*, 1981, 20, 821;
 (d) D. H. Farrar and N. C. Payne, *J. Organomet. Chem.*, 1981, 220, 239.
- 7 D. H. Farrar and G. Ferguson, J. Cryst. Spectr. Res., 1982, 12, 465.
- 8 W. Porzio, A. Muso, and A. Immirzi, Inorg. Chem., 1980, 19, 2537.
- 9 J. Dehand, J. Fischer, M. Preffer, A. Mitschler, and M. Zinsius, Inorg. Chem., 1976, 15, 2675.
- 10 M. A. Bennett, H.-K. Chee, and G. B. Robertson, *Inorg. Chem.*, 1979, 18, 1061.
- 11 M. C. Favas and D. L. Kepert, Prog. Inorg. Chem., 1980, 27, 325.