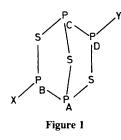
N.M.R. Spectra of α-Tetraphosphorus Trisulphide Isothiocyanates: Extreme Broadening of Phosphorus-31 Absorptions by Nitrogen-14 and Large Phosphorus–Nitrogen Coupling Constants

Bruce W. Tattershall


Department of Chemistry, The University, Newcastle upon Tyne NE1 7RU, U.K.

The collapse of the P_B parts of the ³¹P n.m.r. spectra of α -P₄S₃(¹⁴NCS)₂ (**1a**), α -P₄S₃(¹⁴NCS)I (**2a**), and α -P₄S₃(¹⁴NCS)CI (**3a**) at room temperature is due to ¹⁴N relaxation effects rather than to chemical exchange, as shown by analysis of the spectra of the corresponding ¹⁵N isotopomers (**1b**), (**2b**), and (**3b**), which show very large ¹J_{PN} coupling constants.

The ³¹P n.m.r. spectra of α -P₄S₃(¹⁴NCS)₂ (1a) at 200 K corresponded to the expected AA'BB' spin system, but at 300 K the high frequency, P_B half of the spectrum collapsed into broad peaks.¹ It has now been found that α -P₄S₃(¹⁴NPh₂)₂ (4) showed a normal, quite sharp ³¹P n.m.r. spectrum. Since it was not possible to distinguish, using the available evidence,¹ between ¹⁴N broadening of the ³¹P spectrum, and chemical exchange, as causes for the anomalous spectrum of the di-isothiocyanate (1a), the isothiocyanate halides (2a) and (3a) have now been made [by reaction of α -P₄S₃I₂ with α -P₄S₃Cl₂ with Me₃SiNCS (CS₂ solvent, 20 °C, 22 h) respectively] in solution along with the di-isothiocyanate (1a) and the corresponding dihalide. For each compound (2a) and (3a), ³¹P

n.m.r. peaks primarily due to the phosphorus nucleus carrying the NCS group, P_B (Figure 1), were broadened so as to be invisible at 300 K, but had sharpened sufficiently by 200 K for a crude computer fit as a static ABCD spin system, without ¹⁴N coupling, to be carried out. The isothiocyanate halides (2a) and (3a) thus behaved similarly to the di-isothiocyanate (1a).

To remove the possibility of ¹⁴N broadening, the isothiocyanates have now been made as the completely ¹⁵N-substituted isotopomers (**1b**), (**2b**), and (**3b**). [Na¹⁵NCS was converted to Ag¹⁵NCS and hence to a solution of pure α -P₄S₃(¹⁵NCS)₂ (**1b**); α -P₄S₃(¹⁵NCS)I (**2b**) was produced in an equilibrium mixture as for the ¹⁴N isotopomer (**2a**) above; this was further converted to an equilibrium mixture containing

(1a)	$X = Y = {}^{14}NCS;$
(1b)	$X = Y = {}^{15}NCS;$
(2a)	$X = {}^{14}NCS, Y = I;$
(2b)	$X = {}^{15}NCS, Y = I;$
(3a)	$X = {}^{14}NCS, Y = CI;$
(3b)	$X = {}^{15}NCS, Y = {}^{35}CI;$
(4)	$X = Y = {}^{14}NPh_2;$
(7)	$X = {}^{13}C{}^{14}N, Y = {}^{12}C{}^{14}N$

 α -P₄S₃(¹⁵NCS)Cl (**3b**) by treatment with AgCl (50 °C, 5 days) to replace completely iodide but not thiocyanate. Low concentrations of P(15NCS)₃ (5) and ClP(15NCS)₂ (6), identified by their ³¹P chemical shifts² and expected multiplicities, appeared during slight, slow decomposition (20 °C, 15 weeks) of this solution. An attempt to convert the chloride (3b) further to α -P₄S₃(¹⁵NCS)(C¹⁴N) by treatment with excess Me₃SiCN (20 °C, 28 h) failed to produce a useful yield because cyanide almost completely displaced thiocyanate, as well as chloride, on phosphorus.] The ¹⁵N-isothiocyanates (1b), (2b), and (3b) all showed sharp ³¹P n.m.r. spectra at 300 K; ¹⁵N n.m.r. spectra were also measured and fitted for compounds (1b) and (2b). There was no evidence for chemical exchange on the n.m.r. timescale, and the spectra have been completely analysed assuming static AA'BB'XX' (1b) or ABCDX [(2b) and (3b)] spin systems. Preliminary results of variable temperature studies have shown in each case only small and systematic changes of coupling constants with temperature. Clearly the extreme broadening of P_B peaks of the ¹⁴N isotopomers was due to ³¹P-¹⁴N scalar coupling relaxation effects. A simulation of a completely ¹⁴N-coupled ³¹P spectrum for the di-isothiocyanate (1a), using parameters calculated from those obtained for the ¹⁵N isotopomer (1b), bore little resemblance to the broadened spectrum observed at 300 K: the ¹⁴N relaxation rate was beyond the value at which splittings in the ³¹P spectrum caused by coupling to ¹⁴N had collapsed.

The mononuclear phosphorus(III) isothiocyanates showed large ¹J(³¹P-¹⁵N) coupling constants of 78.8 Hz for P(¹⁵NCS)₃ (5) and 95 Hz for $ClP(15NCS)_2$ (6), compared with 60.1 Hz for $P(^{15}NMe_2)_3$ and 77.6 Hz for $ClP(^{15}NMe_2)_2$.³ The values of ¹J $(^{31}P-^{15}N)$ found for the α -P₄S₃ cage isothiocyanates were even larger: +103.64 Hz for α -P₄S₃(¹⁵NCS)₂ (1b), +104.52 Hz for $\alpha - \bar{P}_4 S_3(^{15}NCS)I$ (2b), and +103.9 Hz for $\alpha - P_4 S_3(^{15}NCS)CI$ (3b), the expected positive sign (*i.e.* negative ${}^{1}K$) being confirmed [for (1b) and (2b)] by the correctly simulated asymmetry of the ¹⁵N multiplet. In phosphorus(III) compounds, large negative ${}^{1}K_{PN}$ is associated with high s-orbital character of the phosphorus non-bonding electron pair, and hence with bond angles at phosphorus approaching 90°, and electronegative ligands. Although sulphur and phosphorus are less electronegative than, e.g. chlorine, the nature of the bonding in, and bond angles of, the α -P₄S₃ skeleton must have been peculiarly contributing to the negative ${}^{1}K$. α -P₄S₃(¹²CN)(¹³CN) (7) has similarly been found to show a large (presumed negative) ${}^{1}J_{PC}$ of -114 Hz.

Dr. M. N. S. Hill is thanked for obtaining the n.m.r. spectra, and the University of Newcastle Small Grants Research Sub-Committee for funding the purchase of Na¹⁵NCS.

Received, 6th October 1988; Com. 8/03996H

References

- 1 B. W. Tattershall, J. Chem. Soc., Dalton Trans., 1987, 1515.
- 2 E. Fluck, Z. Naturforsch., Teil B, 1964, 19, 869.
- 3 J. P. Gouesnard, J. Dorie, and G. J. Martin, *Can. J. Chem.*, 1980, **58**, 1295.