A New Route to Vinylcarbene Metal Complexes in One Step from 2-Propyn-1-01s and Arene Ruthenium(i1) Derivatives

Hubert Le Bozec," Khalid Ouzzine, and Pierre H. Dixneuf"

Laboratoire de Chimie de Coordination Organique (UA-CNRS 415), Campus de Beaulieu, Université de Rennes, *35042 Rennes Cedex, France*

Complex (C₆Me₆)RuCl₂(PMe₃) (1) reacts at room temperature with HC≡CCR₂OH and NaPF₆ in methanol to produce either $[(C_6Me_6)Ru$ \leftarrow $(C(OMe)CH_2CR_2OMe)Cl(PMe_3)$]PF₆ $(R = H)$, **(2)** or $[(C_6Me_6)Ru$ \leftarrow $(C(OMe)CH=CR_2)$]PF₆ $(R \neq H)$, **(3)-(5)]** derivatives *via* an allenylidene-ruthenium intermediate, electrochemical studies of **(3)-(5)** show a reversible Ru^{III}/Ru^{II} oxidation process and irreversible oxidation of the double bond.

Vinylcarbene metal derivatives show potential as metal containing unsaturated substrates. They offer dienophile activation of the carbon-carbon double bond in cycloaddition reactions, **1** provide a route to vinylcyclopropane derivatives by coupling reactions with alkenes,^{2,3} and are intermediates in alkyne polymerisation.4.5 Several methods have been elaborated for the preparation of vinylcarbene-metal derivatives. They involve either the addition of aldehydes or ketones to deprotonated carbene metal complexes,6.7 the addition of vinyl-lithium to metal carbonyl complexes followed by alkylation,⁸ the protonation of dienylmetal derivatives,² the hydroxide elimination of 3-hydroxy, prop-2-enyl metal derivatives³ or the alkylation of vinylacyl-metal compounds.' Each **of** these multi-step reactions has been carried out with metal carbonyl complexes. **A** vinylcarbene derivative of early transition metal has been obtained by coupling of an alkyne with an alkylidene-tantalum complex.¹⁰ Here we report our initial results concerning the preparation of the first vinylcarbene d⁶ metal complexes which do not contain carbonyl ligands, in one step by activation of 2-propyn-1-01s with arene $ruthenium(II)$ derivatives. This reaction supports allenylideneruthenium intermediates.

Arene $RuCl₂(PR₃)$ complexes were shown to be efficient catalyst precursors for the addition of ammonium carbamates and carboxylic acids to 2-propyn-l-ols.11 In an attempt to gain insight into the reaction we have investigated the stoicheiometric interaction between $(\eta^6$ -C₆Me₆)RuCl₂(PMe₃) (1) and 2-propyn-1-01 derivatives. Complex **(1)** was treated in methanol with an excess (2.5 equiv.) of 2-propyn-1-01 in the presence of 1 equiv. of NaPF₆. After 10 min of reaction at room temperature red crystals of **(2)** were isolated **(74%**

yield).+ The same complex **(2)** was also formed by a similar

t Satisfactory elemental analyses were obtained for **(2)-(5).** Selected spectroscopic data for: (2): I.r. (Nujol) 1280 (w, v_{C-O}); 840 (s, v_{P-F}) cm⁻¹; ³¹P{¹H} n.m.r. (32.38 MHz, CD₃COCD₃, 309 K) δ 8.8 **(s**, PMe₃), -145.2 (sept, PF_6^-); ¹H n.m.r. (300.13 MHz, CD_2Cl_2 , 297 K) δ 4.60 (s, 3H, MeOC=Ru), 3.77 and 3.71 (AB q, 2H, =C-CH₂, \mathcal{Y}_{HH} 13 Hz), 3.86 and 3.38 (AB q, 2H, -CH₂-O, ²J_{HH} 24 Hz), 3.29 (s, 3H, CH_2-OMe), 2.10 (s, 18H, C_6Me_6), 1.37 (d, 9H, PMe₃, ^{2J}_{PH} 10.7 Hz); ¹³C{¹H} n.m.r. (75.46 MHz, CD₂Cl₂, 297 K) δ 325.8 (d, Ru=C, ^{2J}_{PC} 21.2 Hz), 107.9 (s, C,Me,), 69.5 (s, -CH2-0), 67.7 **(S,** =COMe), 58.9 (s, CH₂OMe), 51.1 (s, =C–CH₂–), 16.5 (s, C₆Me₆), 15.7 (d, PMe₃, ²JPC 32.5 Hz). (3): I.r. (Nujol) 1595 (w, $v_{C=C}$); 1280 (w, v_{C-O}); 31P{1H} n.m.r. (121.49 MHz, CD2C12, 213 K) 6 7.7 **(s,** PMe,) 6 -143.8 (sept, PF₆-); ¹H n.m.r. (300.13 MHz, CD₂Cl₂, 297 K) δ 6.68 $(s, 1H, HC=), 4.73$ $(s, 3H, -OMe), 1.94$ $(s, 3H, =CMe), 1.90$ $(s, 3H,$ =CMe); ¹³C $\{^1H\}$ n.m.r. (75.46 MHz, CD₂Cl₂, 297 K) δ 306.9 (d, Ru=C, ²J_{PC} 18.9 Hz), 149.4 (s, =C–Me), 138.7 (d, =CH, ²J_{PC} 6.0 Hz), 68.7 **(s,** OMe), 28.3 (s, =CMe), 23.5 **(s,** =CMe). **(4):** 1.r. (Nujol) 1590 $(w, v_{C=C})$, 1280 (w, v_{C-O}) ; ³¹P{¹H} n.m.r. (121.496 MHz, CD₂Cl₂, 213 K) δ 7.35 (s, PMe₃), -143.50 (sept., PF₆-); ¹H n.m.r. (300.134 MHz, CD_2Cl_2 , 297 K) δ 6.54 (s, 1H, HC=), 4.65 (s, 3H, OMe), 1.71–1.46 $[m, 10H, (CH₂)₅];$ 13C $($ ¹H) n.m.r. (75.469 MHz, CD₂Cl₂, 297 K) δ HC=), 68.84 (s, OMe), 33.36, 29.30, 28.16, 26.16 [s, $(CH_2)_5$. (5): I.r. (Nujol) 1590 (w, $v_{C=C}$), 1280 (w, v_{C-O}); ³¹P{¹H} n.m.r. (121.49 MHz, CD₂C1₂, 297 K) δ 5.2 (s, PMe₃), δ -143.5 (sept, PF₆⁻); ¹H n.m.r. 4.11 (s, 3H, OMe); ¹³C{¹H} n.m.r. (75.46 MHz, CD₂Cl₂, 297 K) δ (s, OMe) . **(6)**: I.r. (Nujol) 1940 (m, $v_{C=C=C}$, 840 (s, v_{P-F} cm⁻¹; ³¹P{¹H} n.m.r. (32.38 MHz, CD_2Cl_2 , 309 K) δ 1.9 (s, PMe₃), -144.5 (sept, PF_6^-); ¹H n.m.r. (80 MHz, CD_2Cl_2 , 309K) δ 7.3 (m, 10H, Ph), 2.00 (s, 18H, C6Me6), 1.4 (d, 9H, PMe3, **2JpH** 10 Hz). 310.15 (d, Ru=C, $2J_{PC}$ 22.44 Hz), 155.93 [s, $=$ C (CH₂)₅], 134.74 (s, (300.13 MHz, CD,C12,297 **K)** 6 7.50 **(s,** lH, HC=), 7.35 **(s,** 10H, Phz), 304.2 (d, Ru=C, ${}^{2}J_{\text{PC}}$ 18.7 Hz), 147.7 (s, =CPh₂), 140.2 (s, HC=), 67.9

 $R_{u} = C = C$

Scheme 2

Scheme 1. *Reagents and conditions* (room temp. with NaPF, in methanol): i, $HCECCH₂OH$, 10 min; ii, $HC=CCH₂OMe$, 10 min; $HC=GC(M₂)$, $OL = 10$, min; iii iii, $HC \cong CCH_2Cl$, 10 min; iv, $HC \cong CC(Me)_2OH$, 10 min; v, $HC\equiv CC(C_5H_{10})OH$, 10 min; vi, $HC\equiv CC(Ph)_2OH$, 10 min; vii, HGC(Ph),OH, **24** h.

reaction of complex (1) with HC=CCH₂OMe and $HC \equiv CCH_2Cl$ and isolated in 71 and 68% yields, respectively (Scheme 1).

Under similar conditions, complex **(1)** reacted with 1,ldialkyl-2-propyn-1-ols HC=C-CR₂OH [R = Me; R₂ = $(CH₂)₅$ and after 15 min at room temperature the vinylcarbene derivatives (3)[†] and (4)[†] were obtained in 73 and 65% yields, respectively (Scheme 1). With 1,1-diphenyl-2-propyn-1-ol HC $=$ C $-$ C $Ph₂OH$, the reaction was much slower. The solution colour became rapidly violet and then progressively red. After 24 h at room temperature the red vinylcarbene complex **(5)t** was isolated in 69% yield. When the reaction was quenched by addition of ether after 20 min. at 25°C a violet precipitate was isolated (69%) which was identified as the allenylidene ruthenium intermediate **(6).** Each of these vinyl carbene ruthenium complexes (3)–(5) shows a low-field ¹³C n.m.r. doublet $(\delta$ 304-301) characteristic of carbene carbon, but at a slightly higher chemical shift than that of a non-conjugated ruthenium-carbene such as **(2)** (6 325).

Of special interest are the electrochemical studies of vinylcarbene ruthenium complexes **(3)** and **(5).** Cyclic voltammetry in acetonitrile $[0.1 \text{ m B}u_4 \text{NPF}_6; 200 \text{ mV s}^{-1}]$ between 0

Figure 1. Cyclic voltammogram of (5) in CH₃CN containing 0.1 M Bu_4NPF_6 , at 0.2 V/s. $(SCE = standard$ calomel electrode)

and +1.4 V *vs* standard calomel electrode (SCE) shows a *quasi* reversible wave at $E_k = +1.09 \text{ V}$ for **(3)** and $+1.13 \text{ V}$ for (5) (Figure 1), corresponding to the redox Ru^{III}/Ru^{II} couple. The voltammograms recorded between 0 and + 1.7 **V** show the appearance of a second anodic wave at $E_p = +1.56 \text{ V (3)}$ and +1.57 V *(5)* which is totally irreversible. Moreover, a reverse scan shows a cathodic wave at $E_p = +0.1$ V for **(3)** and **(5)** which is observed only when oxidation at $+1.57$ V is imposed before (Figure 1). This second process is consistent with the oxidation of the C=C double bond, followed by a chemical evolution into a species reducible at $+0.1$ V. Indeed, cyclic voltammograms of $[(C_6Me_6)RuCl(PMe_3)(=C(OMe))$ $CH₂R$)]PF₆ complexes show only one reversible wave between 1.0 and 1.2 V corresponding to the RuIII/RuII redox couple. 12

The formation of complexes (2) — (5) from HC \equiv CCR₂OH derivatives can be explained *via* the vinylidene ruthenium **(A)** and then the allenylidene-ruthenium intermediate **(B)** which was observed only when $R = Ph(6)$. The reaction of (1) with $HC=CCH_2OCH_3$ in CD₃OD led to the complex $\{ (C_6Me_6)$ -**Ru[C(OCD3)CHDCH20CH3]Cl(PMe3)}PF6 (7),**analogous to **(2),** showing that no exchange occurred between the methoxy group attached to C-3 and that of methanol. Thus, it is likely that from 2-propyn-1-01 itself addition of methanol gives first the intermediate **(C)** and then **(2)** (Scheme 2).

The reactions described here give evidence for the specific behaviour of (arene)RuCl₂(PR₃) complexes as compared to the isoelectronic derivative $(\eta^5$ -C₅H₅)RuCl(PMe₃)₂. Selegue showed that the latter reacted with $HC \equiv CCR_2OH$ derivatives to afford, when $R = Me$ a bimetallic complex, and when $R =$ Ph the corresponding allenylidene ruthenium complex without formation of the vinylcarbene ruthenium complex.13

The one-step formation of vinylcarbene arene ruthenium complexes (3) — (5) directly from the easily available $HC \equiv CCR_2OH$ derivatives represents an advantage over the previous methods involving multi-step transformations and metal carbonyl derivatives.

Received, 27th September 1988; Com. 8103835J

References

- 1 W. D. Wulff and D. C. Yang, *J. Am. Chem. SOC.,* 1983,105,6726.
- 2 G-H. Kuo, P. Helquist, and R. C. Kerber, *Organometallics,* 1984, **3,** 806.
- 3 C. P. Casey and W. H. Miles, *Organometallics,* 1984. 3, 808.
- 4 S. J. Landon, P. M. Shulman, and G. L. Geoffroy, J. *Am. Chem.*
- *SOC.,* 1985, 107, 6739.
- 5 T. J. Katz, T. H. Ho, N-Y. Shih, Y-C. Ying, and V. I. **W.** Stuart, J. *Am. Chem.* **SOC.,** 1984, 106, 2659.
- 6 C. P. Casey, R. A. Boggs, and R. L. Anderson, *J. Am. Chem. SOC.,* 1972, **94,** 8947.
- 7 W. D. Wulff and **S.** R. Gilbertson, J. *Am. Chem. SOC.,* 1985, 107, 503.
- 8 J. W. Wilson and E. 0. Fischer, *J. Organomet. Chem.,* 1973, 57. C63.
- 9 B. E. Landrum, J. 0. Lay, Jr., and M. T. Allison, *Organornetallics,* 1988, 7, 787.
- 10 C. D. Wood, S. J. McLain, and R. R. Schrock, *J. Am. Chem. SOC.,* 1979, 101, 3210.
- 11 (a) C. Bruneau and P. H. Dixneuf, *Tetrahedron Lett.,* 1987, **28,** 2005; (b) D. Devanne, C. Ruppin, and P. H. Dixneuf, *J. Org. Chem.,* 1988, 53, 926.
- 12 **H.** Le Bozec, K. Ouzzine, and P. **H.** Dixneuf, unpublished results.
- 13 (a) J. P. Selegue, *J. Am. Chem. SOC.,* 1983, 105, 5921; (b) J. P. Selegue, *Organometallics,* 1982, 1, 217.