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Protonation of (C5Me5)2WH2 to  give [(C5Me5)2WH3]+ is proposed to occur by  attack at both W-H bonds rather than 
by direct attack at the d2 metal centre. 

Protonation reactions of dn ( n  b 2) transition metal complexes 
are generally believed to occur by direct attack at the metal 
centre. The dihydride, (C5Me5)2WH2,1 is readily, and re- 
versibly, protonated by a variety of acids (e .g .  HBF4-Et20, 
HCl,,,, and [Me3NH][BPh4]) to give the trihydride cation, 
[(CsMe5)2WH3]+ [equation (l)]. 

Some rather unexpected features of the stereochemistry of 
this protonation have been revealed by examination of the 
addition of D +  to (CsMes)2WH2. Treatment of a suspension 
of (CsMe5)2WH2 in D20 with a solution of DCl/D20 initially 
(within 1 min) affords a mixture of isomers of 
[(C5Me5)2W(H)2(D)]+: that with the deuterium occupying the 
central position, [ ( C5Me5)2W(H)( D)(H)] + predominates (ca. 
907'0) [equation (2)], with a much smaller fraction of the 
laterally deuteriated isotopomer, [(C5Me5)2W(H)(H)(D)]+ 
(ca. 107'0). Subsequent exchange of the lateral and central 
ligands occurs over a period of several hours [equation (2)], 
accompanied by further incorporation of deuterium from the 
solvent. 

Possible pathways for the protonation of (C5Me5)2WH2 
with D+ are shown in Scheme 1. On the basis of ground state 
orbital control arguments, an electrophile would be predicted 

to attack initially at the HOMO. A qualitative MO diagram 
for (C5Me5)2WH2, based on the results of theoretical calcula- 
tions2 on bent metallocene derivatives and supported by 
numerous structural and spectroscopic studies,3 is shown in 
Figure 1. The 2al HOMO is a tungsten-localised lateral orbital 
that interacts minimally with the two hydride ligands, i .e.  the 
orbital containing the tungsten 'lone pair'. Thus, protonation 
according to orbital control would be expected to proceed 
by path (a) giving the lateral [2H1]-isotopomer, 
[(C5Me5)2W(H)(H)(D)]+. Observation of the central [2H1]- 
isotopomer, [(C5Me5)2W(H)(D)(H)]+, which arises by attack 
along the pseudo-C2 axis, indicates a more subtle situation, 
however. Since there is no occupied, metal-based, central 
orbital, path (b) may be ruled out as a dominant mechanistic 
pathway. If the tungsten-hydride bonds are polarized substan- 
tially towards W-Hb-, the alternative protonation pathways, 
(c) and (d), should be particularly likely. Thus, protonation 
may be subject to charge control (i .e.  H +  attack at the W-H6- 
bond) rather than orbital control (H+ attack at the HOMO).4 
Protonation of a single tungsten-hydrogen bond of 
(C5Me5)2WH2 would thus proceed through a species that 
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Scheme 1. Possible pathways for protonation of (CSMeSj2WH2. (a) 
Electrophilic attack at a lateral, metal-based orbital; (b) electro- 
philic attack at a central, metal-based orbital; (cj central and lateral 
electrophilic attack at one of the hydride ligands; (d) central 
electrophilic attack at both the hydride ligands. 

closely resembles (or may, in fact, be) the dihydrogen-hydride 
cation, [ (CjMe5)2W(q2-H2)H]+ ,5 which subsequently col- 
lapses to the trihydride cation. An analogous sequence for 
protonation of the M-H bonds of the do complex Re(PR3)2H76 
and d6 complex (q5-C5H5)( Me2PCH2CH2PMe2)RuH7 have 
recently been discussed. 

Protonation of a single W-H bond of (C5Me&WH2 from 
the ‘inside’ of the H-W-H angle, rather than from a lateral 
position could possibly be strongly preferred; however, the 
factors dicatating such a preference are not obvious. Alterna- 
tively, it could be argued that the preferential ( 3 c a .  20: 1) 
central protonation is a consequence of the interaction of the 
proton with both hydride ligands [pathway (d)], thus proceed- 
ing through a species that closely resembles (or may, in fact, 
be) the trihydrogen cation, [(C5Me5)2W(q3-H3)]+, which 
subsequently collapses to the trihydride cation. The rather 
acute (ca.  75”) H-W-H angle simultaneously offers both 
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Figure 1. A qualitative MO diagram for (CsMes)2WH2. 

hydrides to electrophilic attack. A trihydrogen adduct has 
recently been invoked to account for the unusual n.m.r. 
behaviour for [ (qS-C5H5)(PMe3)Ir(q3-H3)]+ .s An equivalent 
molecular orbital picture is that attack occurs at the second 
highest occupied molecular orbital (SHOMO), that of l a l  
symmetry. 

In contrast, treatment of (C5Me5)2W(CH3)2 with 
HBF4-Et20 leads to oxidation to the radical cation, 
[(C5Me5)2W(CH3)2]+, rather than simple protonation.9 This 
oxidation sequence may proceed by initial attack of H +  at the 
tungsten centre, rather than at the W-CH3 bond(s), the latter 
being less favoured relative to attack at W-H.t 

Kinetic analysis of 1H n.m.r. data over a period of hours 
clearly reveals that [(CjMe5)2W(H)(H)(D)]+ builds up in 
concentration, and does so faster than the overall conversion 
of the [2Hl] isotopomer [(C5Me5)2WH2D]+ to the [2H2]- 
isotopomer, [(C5Me5)2WHD2]+, and the [2H3]-isotopomer, 
[(C5Me5)2WD3]+. This observation demonstrates that there 
must be an additional pathway for the direct intramolecular 
interconversion of the two [2H1]-isotopomers which does not 
involve a deprotonation mechanism, i.e. reaction (3). A 
possible direct pathway for the intramolecular exchange 
would involve pseudorotation out of the equatorial plane of 
the bent sandwich structure; however, we are not aware of a 
precedent for such a process. More likely mechanisms include 
(i) the intermediacy of a dihydrogen adduct which rotates, (ii) 
the intermediacy of a (closed) trihydrogen adduct10 which 
rotates, and (iii) migration of the hydride ligand to the CSMe5 
ligand to give an q4-diene intermediate, (C5Me5)(q4- 
C5MesH)WHD]+, followed by a ‘Tarzan’ type swing over the 
deuterium, and return to the metal centre. 

t The greater propensity for attack at W-H vs. W-CH3 may be 
ascribed to the more favourable three-centre bonding involving the 
nondirectional s valence orbital of H relative to the highly directional 
sp3 orbital of the methyl group. 
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