A New Route to 1,3-Dienes using 3-Methylene-2,3-dihydrothiophene S,S-Dioxide as an Allyl Sulphone and Michael Acceptor: Synthesis of (\pm) -Ipsenol

Takashi Nomoto and Hiroaki Takayama*

Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa 199-01, Japan

Substituted 2,5-dihydrothiophene *S*,*S*-dioxides, which are stable precursors of the corresponding buta-1,3-dienes, were prepared *via* reactions of 3-methylene-2,3-dihydrothiophene *S*,*S*-dioxide with electrophiles and nucleophiles; this method was applied to the synthesis of (\pm) -ipsenol.

It is well established that direct alkylation of 2,5-dihydrothiophene S,S-dioxides followed by desulphonylation provides a facile stereoselective method for synthesizing (E)-, (E)(Z)-, and (E)(E)-conjugated dienes,¹ and it has been applied to the synthesis of natural products.² However, these direct alkylations are limited to attaching electrophiles to the 2 or 5 positions of the S,S-dioxides. In a continuation of our work,^{2a} it was found that 3-bromomethyl-2,5-dihydrothiophene S,Sdioxide (1)³ reacted with dimethylamine to give 3-(N,Ndimethylaminomethyl)-2,5-dihydrothiophene S,S-dioxide (**3b**) in two competing paths: direct substitution (path a) and HBr–elimination/1,4-addition (path b) (Scheme 1).

Since the intermediate (2),⁺ 3-methylene-2,3-dihydrothiophene S, S-dioxide, has an allyl sulphone moiety as well as an $\alpha,\beta;\gamma,\delta$ -unsaturated sulphone moiety, we expected that it was possible to convert (2) into (3), (4), and (5) by a combination of the reactions with electrophiles and nucleophiles, and it could be a new general method for the synthesis of substituted

[†] Compound (2) was quantitatively obtained by the treatment of (1) with weak base (*e.g.* di-isopropylamine, triethylamine, and K_2CO_3) in CH₂Cl₂, and was relatively unstable in neat form, but it remained in solution [¹H n.m.r. δ (CDCl₃) 7.02 (1H, d, *J* 7.0 Hz), 6.78 (1H, d, *J* 7.0 Hz), 5.57 (1H, s), 5.46 (1H, s), 3.94 (2H, s)].

Table 1. Reactions of (2) with nucleophiles.

Additiveb	Product (yield, %) ^c	Nu
	(3a)(82)	NHBu ⁿ
	(3b)(85)	NMe ₂
	(3c)(90)	$N(CH_2)_5$
	$(3d)(0)^{d}$	NHPh
Et ₃ N	(3e)(90)	SPh
Et ₃ N	(3f)(84)	SCH ₂ CO ₂ Et
DBU	(3g)(42)	$CH_2(NO_2)$
TMG	(3h)(43)	$CH(NO_2)Et$
TMG	(3i)(50)	$CH(NO_2)CH_2CHMe_2$
TMG	(3j)(45)	CH(NO ₂)Ph
TMG	(3k)(78)	$C(NO_2)Me_2$
	Additive ^b Et ₃ N Et ₃ N DBU TMG TMG TMG TMG	$\begin{array}{rl} & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & $

^a Amines (10 equiv.), thiols (1.5 equiv.), and nitro-compounds (2 equiv.) were used. ^b 1 equiv. ^c Isolated yield. ^d Compound (3d) was obtained by the reaction of (1) with aniline *via* direct substitution in 90% yield.

Scheme 2

buta-1,3-dienes (Scheme 2). \ddagger We report here a convenient method for the synthesis of a variety of substituted 2,5-dihydrothiophene *S*,*S*-dioxides using (2) as an allyl sulphone and Michael acceptor.

Compound (2) reacted with aliphatic amines to produce the corresponding (3a-c) in good yield, and reacted with thiols to give (3e,f) in the presence of triethylamine at room temperature (Table 1). Reactions of (2) with alkyl-lithium and Grignard reagents led to the decomposition of (2) because of the basic properties, and none of the adducts was obtained. Successful introduction of carbon nucleophiles to the exomethylene group of (2) was achieved by reaction of (2) with nitro-compounds in MeCN using 1,1,3,3-tetramethylguanidine (TMG)⁴ at room temperature or 1,8-diazabicyclo-

Table 2. Reactions of (8) with nucleophiles.

(8) Nucleophiles	Additivea	Product (yield, %) ^b	R1	R ²	Nu
a Me ₂ NH		(9a)(88)	Me	Н	NMe ₂
a (CH ₂) ₅ NH		(9b)(80)	Me	Н	$N(CH_2)_5$
b Me ₂ NH		(9c)(95)	Me	Me	NMe ₂
b (CH ₂) ₅ NH		(9d)(85)	Me	Me	$N(CH_2)_5$
b HSPh	Et ₃ N	(9e)(56)	Me	Me	SPh
b Me_2CHNO_2	TMG	(9f)(61)	Me	Me	$C(NO_2)Me_2$

a 1 equiv. b Isolated yield.

[5.4.0]undec-7-ene (DBU)⁵ at 0 °C as the base, and the corresponding (3g-k) were obtained in moderate to good yield. Similar results were obtained by the reaction of (1) with nitro-compounds using 2 equiv. of base *via* HBr-elimination/1,4-addition.

Owing to the versatility of the nitro group, nitro-compounds act as useful synthetic intermediates, and this method was applied to the synthesis of (\pm) -ipsenol,⁶ the principle components of the aggregation pheromone of bark beetles (*e.g. Ips confusus*). The nitro-compound (**3i**) was converted into the corresponding carbonyl compound (**6**) by hydrogen peroxide/potassium carbonate⁷ in 50% yield. The reduction of (**6**) (NaBH₄ in methanol) followed by thermal desulphonylation in a sealed tube (NaHCO₃, CDCl₃, 125 °C, 3 h, quantitative) gave (\pm)-ipsenol (**7**).

Compound (2) was allowed to react with electrophiles in the following manner. Compound (8a) was obtained by the addition of lithium hexamethyldisilazide (LiHMDS) (1 equiv.) in tetrahydrofuran (THF) to a solution of (2) (2 equiv.) and MeI (2 equiv.) in THF at -78 °C in 80% yield. Interestingly, the *gem*-dianion⁸ of (2) is rather stable, whereas the monoanion of (2) is unstable at -78 °C. When (2) was added to LiHMDS (2 equiv.) in THF at -78 °C, and then treated with MeI (2 equiv.), (8b) was produced in 90% yield.

[‡] When (1) was subjected to direct alkylation, HBr-elimination occurred immediately.

The reactions of (8) with nucleophiles gave corresponding 2,3and 2,2,3-substituted 2,5-dihydrothiophene *S*,*S*-dioxides (9) (Table 2).

In this way, 3-methylene-2,3-dihydrothiophene S,S-dioxide (2) acted as a synthetic equivalent of isoprene, and was converted to substituted 2,5-dihydrothiophene S,S-dioxides (9) via electrophilic substitution and nucleophilic addition.

Received, 10th October 1988; Com. 8/040241

References

 S. Yamada, H. Ohsawa, T. Suzuki, and H. Takayama, *Chem. Lett.*, 1983, 1003; *J. Org. Chem.*, 1986, **51**, 4934; H. Takayama, H. Suzuki, T. Nomoto, and S. Yamada, *Heterocycles*, 1986, **24**, 303; S.

- 2 (a) T. Nomoto and H. Takayama, *Heterocycles*, 1985, 23, 2913; (b)
 T.-S. Chou, H.-H. Tso, and L.-J. Chang, J. Chem. Soc., Chem. Commun., 1984, 1323.
- 3 R. C. Krug and T. F. Yen, J. Org. Chem., 1956, 21, 1082.
- 4 G. P. Pollini, A. Barco, and G. D. Giuli, Synthesis, 1972, 45.
- 5 N. Ono, A. Kamimura, and A. Kaji, Synthesis, 1984, 226.
- 6 R. M. Silverstein, J. O. Rodin, and D. L. Wood, *Science*, 1966, **154**, 509.
- 7 G. A. Olah, M. Arvanaghi, Y. D. Vankar, and G. K. S. Prakash, Synthesis, 1980, 662.
- 8 J.-F. Biellmann and J.-B. Ducep, 'Organic reactions: Allylic and benzylic carbanions substituted by heteroatoms,' ed. W. G. Dauben, Wiley, Vol. 27, 1982, p. 13.