Novel S–N Ring Contractions using Dithiadiazoles; the Synthesis and *X*-Ray Crystal Structures of [PhCNSSN][S₃N₂]Cl and [(PhCNSSN)₂Cl][S₃N₃]†

Arthur J. Banister,*a William Clegg,b Zdenek V. Hauptman,a Anthony W. Luke,b and Simon T. Waita

Department of Chemistry, University of Durham, South Road, Durham DH1 3LE, U.K.
Department of Chemistry, The University, Newcastle-upon-Tyne NE1 7RU, U.K.

When 4-phenyl-1,2,3,5-dithiadiazole dimer (PhCNSSN)₂ dehalogenates cyclotetrathiatriazenium chloride, [S₄N₃]Cl, and cyclopentathiazenium chloride, [S₅N₅]Cl, in acetonitrile, novel ring contractions occur to give the title compounds (**1**) and (**2**).

1,2,3,5-Dithiadiazolium chlorides, (3), can be dechlorinated chemically¹ (e.g. by NCS⁻, Zn/Cu couple) or electrochemically² to give dithiadiazoles, (4); sulphuryl chloride reacts with dithiadiazoles, (4), to regenerate (3) in high yield.¹ We have therefore investigated the potential of a simply prepared³ dithiadiazole, (4a; R = Ph), as a dechlorinating agent. We have found that the ionic compounds $[S_4N_3]Cl^4$ and $[S_5N_5]Cl^5$ are indeed dechlorinated by (4a) in acetonitrile with simultaneous ring contraction to $S_3N_2^+$ and $S_3N_3^-$, respectively, giving the title compounds (1) and (2).

Green platelets of (1), suitable for X-ray analysis, were formed as a minor product when an acetonitrile solution of (4a) was allowed to diffuse through a glass sinter into a saturated acetonitrile solution of $[S_4N_3]Cl$ above excess solid $[S_4N_3]Cl.$ [‡] The X-ray structure indicated the possibility of synthesis from $S_3N_2Cl^+$ salts; reaction of $[S_3N_2Cl][FeCl_4]^6$ with (4a) in acetonitrile produced [PhCNSSN][FeCl_4] and the

 \dagger 4-Phenyl-1,2,3,5-dithiadiazole-1,2,4,3,5-trithiadiazenium chloride and bis(4-phenyl-1,2,3,5-dithiadiazolium)chloride 1,3,5,2,4,6-trithiatriazinide, respectively.

 $\ddagger Crystal growth$ of [PhCNSSN][S₃N₂]Cl: S₄N₃Cl (0.100 g) was placed in one bulb of a two-bulbed vessel with (PhCNSSN)₂ (0.088 g) in the other bulb. Acctonitrile (8 ml) was added to each side. Inversion of the reaction vessel allowed the solutions to mix by slow diffusion, over a period of one week, through a medium porosity glass sinter. Removal of the brown solution (by syringe and pumping) revealed many orange (S₄N₄ and [PhCNSSN]Cl) and black crystals ([PhCNSSN]₂Cl) interspersed by a small number of shiny green platelets. The green platelets were identified by X-ray analysis as [PhCNSSN][S₃N₂]Cl.

Large scale preparation of [PhCNSSN][S₃N₂]Cl: [S₃N₂Cl][FeCl₄] (0.300 g) and (PhCNSSN)₂ (0.300 g were placed together, with a Teflon coated stirrer bar, in one bulb of a two-bulbed vessel. Acetonitrile (10 ml) was added and immediately a dark green precipitate was formed. The mixture was stirred for one day, the brown solution filtered, and the green precipitate washed with back distilled MeCN (3×10 ml). The solvent was removed by pumping to give a brown sticky tar and a crude green solid which was extracted in a Sox<u>hlet</u> extractor with acetonitrile for one day. Yield of [PhCNSSN][S₃N₂]Cl 56%.

Crystal growth of $[(PhCNSSN)_2Cl][S_3N_3]$: $[S_5N_3]Cl (0.200 g)$ was placed in one bulb of a two-bulbed vessel with $(PhCNSSN)_2 (0.150 g)$ in the other bulb. Acetonitrile (8 ml) was added to each side. Inversion of the reaction vessel allowed the solutions to mix by slow diffusion through a medium porosity glass sinter. Removal of the brown solution (by syringe and pumping) yielded many large golden crystals, a few orange crystals ([PhCNSSN]Cl and S_4N_4), and some black needles ([PhCNSSN]_2Cl]. The golden crystals were identified by X-ray analysis as [(PhCNSSN)_2Cl][S_3N_3].

required compound (1) in 70% yield. This is the preferred synthesis.

The asymmetric unit of (1) combines the monomeric component of (4a), (PhCNSSN)₂, and isoelectronic (5), $(S_3N_2Cl)_{2,7}$ as shown in Figure 1.§

Elongated bright golden prisms of (2), suitable for X-ray analysis, were formed as the major product when an acetonitrile solution of (4a) was allowed to diffuse through a glass sinter into a saturated solution of $[S_5N_5]Cl$ above excess $[S_5N_5]Cl.\ddagger$ Compound (2) crystallises as a layer lattice

Figure 1. The structure of (1), with the atom labelling scheme. Selected distances: S(11)-S(12) 2.055(2), S(11)-N(11) 1.618(5), S(12)-N(12) 1.613(5), N(11)-C(11) 1.339(6), N(12)-C(11) 1.340(6), S(21)-S(22) 2.152(2), S(21)-N(22) 1.632(5), S(22)-N(21) 1.632(5), S(23)-N(21) 1.570(5), S(23)-N(22) 1.556(5), $S(11) \cdots S(21) 2.864(2)$, $S(12) \cdots S(22) 2.812(2)$, $C1 \cdots S(11) 3.134(3)$, $C1 \cdots S(12) 3.100(3)$, $C1 \cdots S(21) 2.907(3)$, $C1 \cdots S(22) 2.954(3)$ Å.

§ Crystal data for (1): [PhCN₂S₂][S₃N₂]Cl, C₇H₅N₄S₅Cl, M = 340.9, monoclinic, space group $P2_1/c$, a = 9.452(2), b = 14.995(3), c = 9.716(2) Å, $\beta = 114.07(1)^\circ$, U = 1257.3 Å³, Z = 4, $D_c = 1.774$ g cm⁻³, F(000) = 688, μ (Mo- K_{α}) = 1.08 mm⁻¹, $\lambda = 0.71073$ Å. Crystal size 0.37 × 0.48 × 0.04 mm, in Lindemann capillary, T = 295 K, Siemens AED2 diffractometer, 32 reflections (20 20–25°) for cell refinement. Data collection by ω - θ scan, range 0.51° below α_1 to 0.51° above α_2 ; scan time 17.5–70 s, $2\theta_{max.} = 50°$; h - 11 to 11, k 0 to 17, l0 to 11, plus a few equivalents with k, l < 0. 3 Standard reflections, no significant variation. No absorption or extinction correction. 2450 Reflections measured, 2223 unique, 1327 with $F > 4\sigma_c(F)$ (σ_c from counting statistics), $R_{int.} = 0.031$. Structure solution by direct methods and difference syntheses (SHELXTL programs), blocked-cascade leastsquares refinement on *F*. R = 0.049, $R_w = 0.0045$.

For (2): [PhCN₂S₂]₂[S₃N₃]Cl, C₁₄H₁₀N₇S₇Cl, M = 536.2, triclinic, space group $P\overline{1}$, a = 9.509(2), b = 10.641(2), c = 12.187(3), $\alpha = 98.29(1)$, $\beta = 107.61(1)$, $\gamma = 112.08(1)^\circ$, U = 1041.7 Å³, Z = 2, $D_c = 1.709$ g cm⁻³, F(000) = 544, μ (Mo- K_{α}) = 0.88 mm⁻¹. Crystal size 0.2 × 0.4 × 0.7 mm, in Lindemann capillary, T = 295 K. Data collection and structure determination as above, except as noted: scan range 0.85° below α_1 to 0.85° above α_2 , scan time 17.5—52.5 s; $2\theta_{max} = 50^\circ$; h - 11 to 11, k - 12 to 12, l - 14 to 0. 5318 Reflections measured, 3698 unique, 2836 with $F > 4\sigma_c(F)$, $R_{int.} = 0.012$, R = 0.083, $R_w = 0.039$.

Atomic co-cordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

Figure 2. The structure of (2), showing the labelling of the asymmetric unit, the ring stacking, and the Cl-centred cation. Selected distances: S(11)-S(12) 2.034(1), S(11)-N(11) 1.597(3), S(12)-N(12) 1.611(3), N(11)-C(11) 1.359(5), N(12)-C(11) 1.329(3), S(21)-S(22) 2.047(1), S(21)-N(21) 1.607(3), S(22)-N(22) 1.606(3), N(21)-C(21) 1.340(5), N(22)-C(21) 1.344(3), S(31)-N(31) 1.587(4), S(31)-N(32) 1.597(4), S(32)-N(32) 1.593(4), $C1 \cdots S(11) 2.904(2)$, $C1 \cdots S(12) 2.903(2)$, $C1 \cdots S(21) 3.082(2)$, $C1 \cdots S(22) 2.897(2)$ Å.

Figure 3. Parallel stacking of rings in (2), seen in projection along the *c* axis.

(Figures 2 and 3) composed of the new essentially planar cation [PhCNSSN]Cl[PhCNSSN]+ and approximately planar $S_3N_3^-$. This is a new route to a trithiatriazinide—normally prepared from a quaternary ammonium azide and S_4N_4 in ethanol.⁸ The bond parameters in the new cation [(PhCNSSN)₂Cl]⁺ (*e.g.* $d_{SN} = 1.6$ Å and $d_{SS} = 2.04$ Å) are intermediate between those in [PhCNSSN]Cl (1.59 and 1.99 Å) and in (PhCNSSN)₂ (1.62 and 2.09 Å). The bond parameters for the $S_3N_3^-$ anion do not differ significantly from those in [Buⁿ₄N][S₃N₃].⁹

This work shows the value of $(PhCNSSN)_2$ for dechlorination of Cl/S/N compounds under mild conditions; the cited reactions ultimately produce the known $S_3N_3^-$ and $S_3N_2^+$ rings *via* novel ring contractions, with the formation of S_4N_4 as a by-product.

We thank the S.E.R.C. for research grants (A. J. B. and Z. V. H.; and W. C.) and I.C.I. (Paints Division) for a studentship (S. T. W.).

Received, 1st June 1988;¶ Com. 8/02177E

References

- 1 A. J. Banister, N. R. M. Smith, and R. G. Hey, J. Chem. Soc., Perkin Trans. 1, 1983, 1181.
- 2 S. A. Fairhurst, K. M. Johnson, L. H. Sutcliffe, K. F. Preston, A. J. Banister, Z. V. Hauptman, and J. Passmore, J. Chem. Soc., Dalton Trans., 1986, 1465.
- 3 A. Vegas, A. Pérez-Salazar, A. J. Banister, and R. G. Hey, J. Chem. Soc., Dalton Trans., 1984, 1377.
- 4 W. L. Jolly and K. D. Maguire, Inorg. Synth., 1967, 9, 106.
- 5 A. J. Banister, Z. V. Hauptman, A. G. Kendrick, and R. W. H. Small, J. Chem. Soc., Dalton Trans., 1987, 915.
- 6 A. J. Banister and P. J. Dainty, J. Chem. Soc., Dalton Trans., 1972, 2658.
- 7 R. W. H. Small, A. J. Banister, and Z. V. Hauptman, J. Chem. Soc., Dalton Trans., 1984, 1377.
- 8 J. Bojes and T. Chivers, Inorg. Chem., 1978, 17, 318.
- 9 J. Bojes and T. Chivers, J. Chem. Soc., Chem. Commun., 1978, 391; J. Bojes, T. Chivers, W. G. Laidlaw, and M. Trsic, J. Am. Chem. Soc., 1979, 101, 4517.

¶ Received in revised form, 3rd November 1988.