Chemical Communications

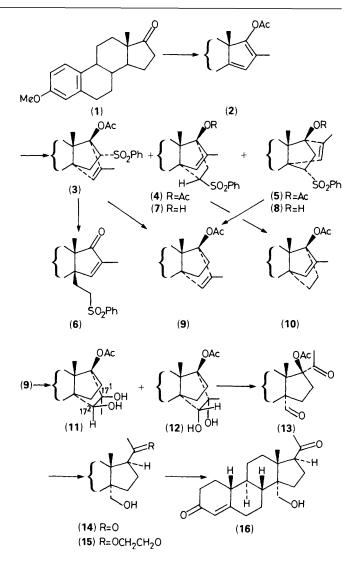
Number 19 1989

Cycloaddition Route to 14-Hydroxymethyl-19-norprogesterone

James R. Bull^a and Karl Bischofberger^b

^a Department of Chemistry, University of Cape Town, Rondebosch 7700, South Africa

^b National Chemical Research Laboratory, CSIR, PO Box 395, Pretoria 0001, South Africa


Diels–Alder reaction of 3-methoxy-16-methylestra-1,3,5(10),14,16-pentaen-17-yl acetate with phenyl vinyl sulphone affords three 14,17-cycloadducts, two of which are efficiently converted into 14-hydroxymethyl-19-norprogesterone.

An extension of the previously reported¹ cycloaddition approach to the synthesis of 14α -functionalised 19-norsteroids entails [4 + 2] cycloaddition of an ethylene equivalent to a 16-methyl-14,16-dien-17-yl acetate. It was expected that oxidative cleavage of the residual alkenic bond in such a cycloadduct would generate a 17-acetyl side chain, and thereby provide access to 14α -functionalised alkyl compounds in the 19-norpregnane series.

In pursuance of the objective, estrone 3-methyl ether (1) was converted into the desired starting material (2), through sequential α -methylenation, catalytic hydrogenation, bromination, dehydrobromination and enol acetylation.² Treatment of (2) in xylene with phenyl vinyl sulphone in a sealed tube at 140 °C for 120 h produced a three-component mixture (*ca.* 2.5:1:2.5, t.l.c.), from which the minor, relatively insoluble cycloadduct (4) (14%) of intermediate R_F was recovered directly as a crystalline product, m.p. 260–262 °C; $[\alpha]_D + 103^\circ$ (*c* 0.9, CHCl₃).[†] Chromatography of the mother liquor residue furnished the two remaining products (3) (*ca.* 38%), amorph.; $[\alpha]_D + 60^\circ$ (*c* 1.0, CHCl₃) and (5) (*ca.* 38%), amorph.; $[\alpha]_D + 37^\circ d$ (*c* 0.9, CHCl₃).

The n.m.r. spectroscopic properties of the cycloadducts demonstrated their gross structural similarity and the expected *endo*-orientation of the phenylsulphonyl group in each case, but failed to distinguish between the three of four possible isomers. However, one cycloadduct (**3**) underwent alkali-mediated cleavage to give the 14β-(2-phenylsulphonyl-ethyl)- Δ^{15} -17-one (**6**), whereas (**4**) and (**5**) suffered only hydrolysis at the bridgehead under similar conditions, to give the respective alcohols (**7**) and (**8**). Furthermore, treatment of both (**3**) and (**5**) with sodium amalgam in tetrahydrofuran-methanol, at 0 °C for 4 h and 25 °C for 16 h, followed by reacetylation of the bridgehead hydroxy group, afforded the same product, 14,17 α -etheno-3-methoxy-17¹-methylestra-1,3,5(10)-trien-17 β -yl acetate (**9**), m.p. 117–119 °C (from dichloromethane-methanol); [α]_D +87° (*c* 0.9, CHCl₃).

[†] All new compounds have been fully characterised and gave satisfactory microanalyses.

However, desulphonylation of (4) under similar conditions gave a complex mixture, which was chromatographically inseparable and showed n.m.r. spectral signals compatible with the presence of the 14β , 17β -etheno compound (10) as a major component. Since subsequent transformations of (9) confirmed the assigned configuration of the etheno bridge, the regio- and stereo-chemistry of the three primary cycloadducts (3)—(5) was thus established.

This cycloaddition represents the first example of depressed regio- and stereo-selectivity in Diels-Alder reactions on steroidal 14,16-dienes.^{1,3-5} It is evident that the 16-methyl group plays a decisive role in influencing the orbital coefficients of the substrate (2), and that the consequential *meta* regioselectivity is attended by a significant loss of β -face stereoselectivity. Nevertheless, the purpose in hand was well served by an overall conversion of the diene (2) into the desired 14 α ,17 α -etheno compound (9) in *ca*. 60% yield.

Osmylation of compound (9), followed by reductive workup gave a separable mixture (*ca.* 12:1) of the $17^{1}S, 17^{2}S$ - and $17^{1}R, 17^{2}R$ - diols (11) and (12) which were distinguished by distinctive n.m.r. spectroscopic properties. Thus the 17^{2} proton of (11) appeared at δ 4.23 as a doublet (*J* 2.1 Hz, after D₂O exchange), owing to four-bond coupling with the favourably orientated 15 β -proton (planar W-configuration), whereas the corresponding signal in (12) appeared as a singlet at δ 3.65. Furthermore, the proximity of the 17^{2} -*exo*-hydroxy group in (12) to the 9 α -proton resulted in pronounced deshielding (δ 3.53) of that signal, in comparison with the analogous signal (δ 2.8) in (11).

Cleavage of the respective diols (11) and (12) with sodium periodate in aqueous ethanol gave 17β-acetoxy-3-methoxy-20-oxo-19-nor-17 α -pregna-13,5(10)-triene-14-carbaldehyde (13) (95%), m.p. 212—223 °C (from ethyl acetate); $[\alpha]_D + 3.5^\circ$ (*c* 0.9, CHCl₃); δ 1.24 (3H, s, 18-H₃), 2.05 and 2.1 (each 3H, s, 17-OAc and 21-H₃), and 9.87 (1H, br.s, CHO), reduction of which with calcium in liquid ammonia–tetrahydrofuran resulted in 17-deacetoxylation and concomitant reduction of the 14-formyl group to give 14-hydroxymethyl-3-methoxy-19-norpregna-1,3,5(10)-triene-20-one (14), m.p. 155—156 °C (from ethyl acetate–hexane); $[\alpha]_D + 158^\circ$ (*c* 0.9, CHCl₃). The expected inversion at C(17) was verified by a circular

dichroism (c.d.) spectrum, which displayed a Cotton effect ($\Delta \epsilon_{max}$ +3.25 at 289 nm, in methanol) typical of 17 β -acetyl steroids.⁶

Treatment of (14) with ethylene glycol and a catalytic amount of toluene-*p*-sulphonic acid in refluxing benzene for 8 h, with removal of water, afforded the labile 20,20-ethylenedioxy derivative (15), which was subjected to Birch reduction (lithium in liquid ammonia–tetrahydrofuran–t-butyl alcohol at -35 °C for 2.5 h), followed by hydrolysis and isomerisation in the presence of methanolic hydrochloric acid, to give 14hydroxymethyl-19-norpregn-4-ene-3,20-dione (16) m.p. 198 -200 °C (from chloroform–ethyl acetate); $[\alpha]_D + 140^\circ$ (*c* 0.5, CHCl₃); ν_{max} 3634(OH), 1700(20–CO), 1662(3–CO), and 1620(C=C) cm⁻¹. The chiroptical properties of (16) [$\Delta \varepsilon_{max}$ -1.69 (321 nm) and +3.14 (283 nm)] were comparable with those of 19-norprogesterone.

The method outlined here is clearly applicable in general to the synthesis of pregnane and 19-norpregnane analogues bearing 14α -hydroxymethyl functionality and, the unusual cycloaddition outcome notwithstanding, provides an efficient and simple route to this hitherto unknown series of compounds.

Received, 31st May 1989; Com. 9/02264C

References

- 1 J. R. Bull and R. I. Thomson, J. Chem. Soc., Chem. Commun., 1986, 451.
- 2 The reaction sequence is adapted from analogous procedures described in the following sources: G. Neef, U. Eder, A. Schleusener, and R. Wiechert, Ger. Pat. DE 3023568, 1981; F. B. Gonzalez, G. Neef, U. Eder, R. Wiechert, E. Schillinger, and Y. Nishino, *Steroids*, 1982, **40**, 171.
- 3 A. J. Solo, B. Singh, E. Shefter, and A. Cooper, *Steroids*, 1968, 11, 637, and related papers in this series.
- 4 K. J. Atwal, S. P. Sahoo, T. Y. R. Tsai, and K. Wiesner, *Heterocycles*, 1982, **19**, 641.
- 5 D. Schomburg, M. Thielmann, and E. Winterfeldt, *Tetrahedron Lett.*, 1986, **27**, 5833.
- 6 P. Crabbe, 'Optical Rotatory Dispersion and Circular Dichroism in Organic Chemistry,' Holden-Day, 1965, ch. 6.