The Preparation, Characterization in Solution of the 7π Radical 1,2,4-Triseleno-3,5-diazolylium and the 6π (1,2,4-Triseleno-3,5-diazolium)²⁺ Cations, and the X-Ray Crystal Structures of (SeNSeNSe)₂(AsF₆)₂ and SeNSe(AsF₆)₂ containing the First Stable Binary Selenium–Nitrogen Species

Edward G. Awere, Jack Passmore,* Peter S. White,* and Thomas Klapötke

Department of Chemistry, University of New Brunswick, Bag Service No. 45222, Fredericton, NB, E3B 6E2, Canada

 $(SeNSeNSe)_n(AsF_6)_2$ (n = 1,2) containing the first stable binary selenium–nitrogen species, have been prepared by the reaction of stoicheiometric quantities of Se₄(AsF₆)₂ (n = 2) or AsF₅ (n = 1 and 2) with Se₄N₄ in liquid SO₂, and their structures determined by X-ray crystallography; in solution (SeNSeNSe)₂(AsF₆)₂ gives the indefinitely stable 7π radical SeNSeNSe⁺⁺ (e.s.r. spectrum of frozen powder), and SeNSeNSe(AsF₆)₂ the 6π SeNSeNSe²⁺ (Raman and ¹⁴N n.m.r. spectra).

Numerous binary sulphur-nitrogen species have been prepared and structurally characterised¹ including NS+,² SNS+,³ $(SNSNS)_2N^+, 4$ $SNSNS^+, (SNSNS^+)_2, S_4N_3^+, S_4N_4^{2+}, S_4N_5^+, S_5N_5^+, S_2N_2, S_4N_2, S_4N_4, (SN)_x, SSNS^-, SSSNS^-, S_3N_3^-, and S_4N_5^-. Analogous selenium-nitrogen$ compounds are restricted to Se_4N_4 , which is even more thermodynamically and kinetically⁵ unstable than S_4N_4 $[\Delta H_{\rm f}^{\circ}(S_4N_4) \ 460 \ \pm \ 8 \ \rm kJ \ mol^{-1}; \ \Delta H_{\rm f}^{\circ} \ (Se_4N_4) \ 682 \ \pm \ 13 \ \rm kJ$ mol⁻¹]. In contrast to neutral and anionic sulphur-nitrogen compounds, sulphur-nitrogen cations do not undergo explosive nitrogen elimination reactions (except $S_4N_5^+$). We therefore anticipated that selenium-nitrogen cations would also be thermally stable. The mixed sulphur-selenium-nitrogen cation $(SenSNSe)_2(AsF_6)_2$ is known,6 and on reaction with AsF5 gives SeNSNSe(AsF6)2.7 Very surprisingly, we were able^{7a} to assign e.s.r. powder spectra of frozen solutions of $SeNSNSe^{(AsF_6)_2}$ in liquid SO_2 or D₂SO₄ to SeNSNSe⁺ and SeNSeNSe⁺, as well as lesser amounts of SNSNS+"! This motivated us to synthesise selenium-nitrogen cations on a preparative scale directly, including the radical cation $SeNSe^{+}$, $(3)^{+}$, and to clarify the e.s.r. results. The first selenium-nitrogen cation

containing salts (SeNSeNSe)₂(AsF₆)₂ (1) and SeNSeNSe(AsF₆)₂ (2) were subsequently prepared in high yield in liquid SO₂ solutions according to equations 1-4.

$$3Se_4N_4 + 6AsF_5 \rightarrow 2(1) + 2N_2 + 2AsF_3$$
 (2)

$$(1) + 3AsF_5 \rightarrow 2\overline{SeNSeNSe}(AsF_6)_2 + AsF_3 \qquad (3)$$
(2)

$$3Se_4N_4 + 12AsF_5 \rightarrow 4(2) + 2N_2 + 4AsF_3$$
 (4)

Highly crystalline (1) and (2) are both stable on grinding, on manipulation with a nickel spatula, and on heating during attempted melting point determinations. A solution of (2) in liquid AsF₃ maintained at 55 °C for 1 h did not lose N₂, and a solid sample maintained at 140 °C for 4 days *in vacuo* in a sealed tube, still contained some of the original compound (i.r.). These salts contain the first examples of stable binary selenium–nitrogen species and open up this area for exploration. Compound (1) also contains the indefinitely stable 7π

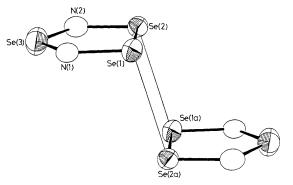


Figure 1. The structure of the two crystallographically unique centrosymmetric $[(3)^{++}]_2$ dimers in (1). Bond distances (Å) and angles (°) in $[(3)^{++}]_2$: the second value given in each case corresponds to that for the other independent dimer. Se(1)–Se(2) 2.398(3), 2.395(3); Se(1)–N(1) 1.761(15), 1.739(14); Se(3)–N(1) 1.691(15), 1.724(14); Se(3)–N(2) 1.688(14), 1.703(14); Se(2)–N(2) 1.759(14), 1.709(14); Se(1)–Se(2a) 3.123(3), 3.149(3). Se(1)–N(1)–Se(3) 120.8(8), 120.9(8); Se(2)–N(2)–Se(3) 120.6(8), 120.8(8); Se(1)–Se(2)–N(2) 95.6(5), 95.5(4); Se(2)–Se(1)–N(1) 95.2(5), 96.1(4); N(1)–Se(3)–N(2) 107.7(7), 106.7(7); N(1)–Se(1)–Se(2a) 106.6(5), 105.1(5); N(2)–Se(2)–Se(1a) 107.7(5), 105.6(5); Se(1)–Se(2)–Se(1a) 89.31(8), 89.13(8); Se(2)–Se(1)–Se(2a) 90.69(8), 90.87(8).

radical, $(3)^{+}$. However their synthesis depends on prior preparation of the potentially explosive Se₄N₄. This we have found to be accessible[†] in small amounts (*ca.* 1 g) in a slightly impure, rather than pure, state as the tendency to explode seems to increase with purity (*cf.* S₄N₄).⁸

The identities of (1) and (2) were confirmed by the determination of their X-ray crystal structures.[‡] The $[(3)^{+1}]_2$

[†] Se₄N₄ was prepared by a slight modification of the published procedure.¹⁴ SeBr₄ was prepared from Se (99%) (containing some sulphur) and Br₂ in CS₂. This was reacted with a large excess of liquid NH₃ in a Parr bomb. The resulting Se₄N₄ was dried with anhydrous EtOH and stored under dry CCl₄ in plastic containers. All the precautions outlined in refs. 14 and 15 were strictly observed. The resulting products consistently contained some SeNSNSe⁺⁺ or SeNSNSe²⁺ [δ (Me₂Se) 2412 p.p.m., v_{1/2} = 11.8 Hz, -70 °C]. The relative amount decreased when 99.999% Se was used but the tendency for the purer Se₄N₄ to explode increased.

‡ Crystal data for (1): (SeNSeNSe)₂(AsF₆)₂, M = 907.29, triclinic, space group PI, a = 8.2132(15), b = 10.3249(15), c = 10.4519(13) Å, $\alpha = 82.384(11)$, $\beta = 82.439(13)$, $\gamma = 70.542(14)^\circ$, U = 824.7 Å³, Z = 2, $D_c = 3.66$ Mg m⁻³, μ (Mo- K_{α}) = 8.64 mm⁻¹, crystal size $0.30 \times 0.30 \times$ 0.20 mm. Data were collected on an Enraf–Nonius CAD-4 automated diffractometer with graphite monochromated Mo- K_{α} radiation ($\lambda =$ 0.71073 Å) using ω –2 θ scans ($2\theta_{max}$. of 50°), and were corrected for absorption.¹⁶ The structure was solved by direct methods and refined by full-matrix least-squares¹⁷ to residuals of R = 0.051, $R_w = 0.064$ (0.096, 0.076 including unobserved) for 1860 reflections [$I \ge 2.5\sigma(I)$] (2876 total) and 218 parameters. All atoms were assigned anisotropic thermal parameters. Scattering factors were taken from the International Tables for Crystallography¹⁸ and corrected for anomalous dispersion.

For (2): SeNSeNSe(AsF₆)₂, M = 642.49, monoclinic, space group C2, a = 12.7989(15), b = 8.6837(9), c = 10.8132(10) Å, $\beta = 91.467(9)^\circ$, U = 1201.4 Å³, Z = 4, $D_c = 3.55$ Mg m⁻³, μ (Mo- K_{α}) = 14.69 mm⁻¹, crystal size $0.69 \times 0.46 \times 0.35$ mm. Data collection, structural solutions, and refinement were carried out as described above. Residuals of R = 0.052, $R_w = 0.062$ (0.064, 0.065 including unobserved) for 935 reflections [$I \ge 2.5\sigma(I)$] (1125 total) and 173 parameters were obtained. All atoms were assigned anisotropic thermal parameters. Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the University of Bonn. See Notice to Authors, Issue No. 1.

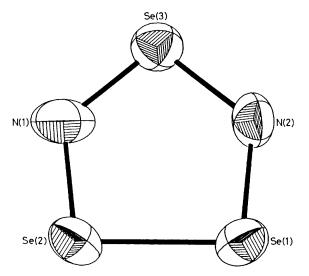


Figure 2. The structure of the 6π cation (3)²⁺ in (2). Bond distances (Å) and angles (°) in (3)²⁺: Se(1)–Se(2) 2.334(3), Se(1)–N(2) 1.734(21), Se(3)–N(2) 1.698(21), Se(3)–N(1) 1.689(18), Se(2)–N(1) 1.744(20); Se(1)–N(2)–Se(3) 122.3 (12), N(2)–Se(3)–N(1) 103.8(9), Se(3)–N(1)–Se(2) 122.7(10), N(1)–Se(2)–Se(1) 95.2(5), Se(2)–Se(1)–N(2) 95.8(7).

and $(3)^{2+}$ cations are illustrated in Figures 1 and 2, respectively. The $[(3)^{+}]_2$ dication is very similar to those of the related $(SeNSNSe^{+})_2$ (ref. 6) and $(SNSNS^{+})_2$.⁹ In both crystallographically different $[(3)^+]_2$ dimers, the 7π (3)+. monomers are weakly linked, in a centrosymmetric trans arrangement, through the diselenium portions of each of the rings $[2 \times 3.123(3), 2 \times 3.149(3) \text{ Å}]$ by overlap of the selenium portions of the two singly occupied molecular orbitals (SOMO)(A), [by comparison with the SOMO of $SNSNS^+$. (refs. 7a, 10, 11)]. The bond distances within the 6π (3)²⁺ cation are consistent with the removal of an electron from the 7π (3)+• SOMO, (A). Thus the selenium-selenium distance and the adjacent selenium-nitrogen distances are all shorter in the dication [by 0.0625, and 0.018 Å (averages), respectively]. The Se-N bond distances in both cations are indicative⁶ of significant $2p\pi$ -4p π bonding which is more pronounced in the dication.

The Raman spectrum of a solution of (2) in liquid AsF₃ at -10 °C was similar to that of the solid and only one resonance was present in the ¹⁴N n.m.r. spectrum of an SO₂ solution at room temperature [δ (NO₂Me) -67.6 p.p.m., v_{1/2} 200 Hz]. Thus (3)²⁺ retains its ring structure in solution, in contrast to $\overline{SNSNS^{2+}}$, which dissociates to NS⁺ and SNS⁺.¹²

The e.s.r. powder spectrum of frozen solutions of (1) and $SeNSNSe_2(AsF_6)_2$ in liquid SO₂ show the presence of peaks attributable to (3)⁺⁺ and $SeNSNSe^{++}$, respectively (Figure 3). The spectra are similar, but not identical, as their SOMOs are very similar [see (A)]. These data agree with our reported^{7a} results for $SeNSNSe^{++}$, but not (3)⁺⁺. We previously^{7a} obtained e.s.r. spectra of frozen solutions of ($SeNSNSe_2$) (AsF_6)₂, and assigned the spectrum to a mixture of (3)⁺⁺ and $SeNSNSe^{++}$ because of the splittings of the peaks in the low

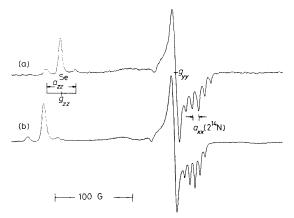


Figure 3. The X-band e.s.r. powder spectra, at -160° C, of frozen solutions of (a) (1) and (b) (SeNSNSe)₂(AsF₆)₂ in anhydrous liquid SO₂; g and hyperfine tensors for (3)+, a_{xx} (2¹⁴N) 9 (±0.2) G, g_{yy} 2.011 (±0.001), g_{zz} 2.123 (±0.001), a_{zz} (⁷⁷Se) 43 (±0.2) G, g_{iso} (22 °C) 2.043 (±0.001); for SeNSNSe⁺⁺, a_{xx} (2¹⁴N) 7.25 (±0.2) G, g_{iyy} 2.011 (±0.001), g_{zz} 2.136 (±0.001), a_{zz} (⁷⁷Se) 43 (±0.2) G, g_{iso} (22 °C) 2.046 (±0.001).

field region. These results arose from the non-rigorously anhydrous conditions, and the assignments for $(3)^{+}$ (but not $\overline{SeNSNSe^{+}}$) were therefore erroneous.

Compound (1) was prepared as follows. SO_2 (7.05 g) was condensed onto a mixture of Se_4N_4 (0.60 g, 1.60 mmol) and $Se_4(AsF_6)_2$ (1.06 g, 1.53 mmol) at -78 °C.§ The mixture was stirred for 6 h, producing a red-brown solution over a dark brown solid. The solvent was removed, and the brown solid (1.63 g) finely ground in the Dri-lab, and placed on the glass frit of an extraction vessel^{9b} joined to a two bulbed vessel incorporating a medium sintered glass frit. Continuous refluxing with liquid SO_2 for 3 days, followed by purification and removal of the solvent, led to a crystalline black extracted product (1.08 g) having a dark green appearance in reflected light, and a black powder (0.317 g, selenium) remaining on the frit. Elemental analysis for all elements fitted very well with the given formulation [recovered yield of (1) 78% based on $Se_4(AsF_6)_2$ and equation 1]. Compound (1) (0.494 g) was also prepared in high yield by the reaction of Se_4N_4 (0.28 g, 0.75 mmol) and AsF₅ (0.25 g, 1.45 mmol) in SO₂ (2.6 g) according to equation 2.

Compound (2) was prepared as follows. An excess of AsF₅ (1.58 g, 9.23 mmol) relative to that indicated in equation 4 was condensed onto Se_4N_4 (0.48 g, 1.3 mmol) in SO_2 (4.4 g) at -78°C§ in a two bulbed vessel, producing a red-brown solution above yellow crystals after stirring for 6 h. The solution was transferred into the second bulb and the yellow crystals were washed twice with about 1 ml of SO₂. 0.73 g of highly crystalline yellow material were obtained from the less soluble fraction, and 0.62 g of yellow-brown solid from the more soluble fraction. Subsequent elemental analyses for all elements on the crystals fitted very well for (2). The ⁷⁷Se n.m.r. spectrum in SO₂ solution at -70 °C showed only one peak at δ (Me₂Se) 2434 p.p.m., v_{1/2} 10.05 Hz. This is the highest ⁷⁷Se chemical shift so far recorded,¹³ consistent with the depositive charge, and an aromatic 6π ring system. The presence of one, rather than the expected two, resonances for $(3)^{2+}$, and the absence of satellite peaks due to ⁷⁷Se-⁷⁷Se spin

coupling suggest a rapid equilibrium as shown in equation 5. However, the Raman spectrum in AsF₃ at -10 °C showed only $(3)^{2+}$, and one resonance in the ¹⁴N n.m.r. in SO₂ at room temperature. Therefore if equilibrium (5) does occur at room temperature and below, it must be very far to the left. Compound (2) (0.452 g) was also prepared by the oxidation of (1) (0.319 g, 0.70 mmol) by AsF₅ (0.42 g, 2.47 mmol) in SO₂ (2.88 g) as described in equation 3.

$$\overline{SeNSeNSe^{2+}} \longrightarrow NSe^{+} + SeNSe^{+}$$
(5)

We thank the N.S.E.R.C. of Canada and the University of New Brunswick for financial support, the Alexander von Humboldt Foundation for a Lynen Fellowship (T. K.), and Mr. Rodney MacGregor of the Physics Department, University of New Brunswick, for his assistance in obtaining e.s.r. spectra.

Received, 23rd March 1989; Com. 9/01267B

References

- 1 H. G. Heal, 'The Inorganic Heterocyclic Chemistry of Sulphur, Nitrogen, and Phosphorus,' Academic Press Inc., London, 1980, and references therein; T. Chivers and R. T. Oakley, *Top. Curr. Chem.*, 1982, **102**, 117, and references therein; T. Chivers, *Acc. Chem. Res.*, 1984, **17**, 166, and references therein; R. Gleiter, *Angew. Chem.*, *Int. Ed. Engl.*, 1981, 20, 444.
- 2 A. Apblett, A. J. Banister, D. Biron, A. G. Kendrick, J. Passmore, M. Schriver, and M. Stojanac, *Inorg. Chem.*, 1986, **25**, 4451, and references therein.
- 3 P. Johnson, J. Passmore, P. S. White, A. J. Banister, and A. G. Kendrick, *Acta Crystallogr.*, *Sect. C*, 1987, **43**, 1651, and references therein.
- 4 G. K. MacLean, J. Passmore, and P. S. White, J. Chem. Soc., Dalton Trans., 1984, 211.
- 5 W. Behrendt and U. W. Gerwarth, 'Gmelin Handbook of Inorganic Chemistry,' Se Suppl. vol. Bl, Springer-Verlag, 1981, p. 321, and references therein; C. K. Barker, A. W. Cordes, and J. L. Margrave, J. Phys. Chem., 1965, 69, 334.
- 6 R. J. Gillespie, J. P. Kent, and J. F. Sawyer, *Inorg. Chem.*, 1981, **20**, 4053, and references therein.
- 7 (a) E. Awere, J. Passmore, K. F. Preston, and L. H. Sutcliffe, *Can. J. Chem.*, 1988, **66**, 1776; (b) E. G. Awere, J. Passmore, and P. S. White, manuscript in preparation.
- 8 M. Villena-Blanco and W. L. Jolly, Inorg. Synth., 1967, 9, 98.
- 9 (a) A. J. Banister, H. G. Clarke, I. Rayment, and H. M. M. Shearer, *Inorg. Nucl. Chem. Lett.*, 1974, **10**, 647; (b) R. W. H. Small, A. J. Banister, and Z. V. Hauptman, *J. Chem. Soc., Dalton Trans.*, 1984, 1377; (c) R. J. Gillespie, J. P. Kent, and J. F. Sawyer, *Inorg. Chem.*, 1981, **20**, 3784, and references therein.
- 10 R. G. Gleiter, R. Bartetzko, and P. Hofmann, Z. Naturforsch., Teil B, 1980, 35, 1166.
- 11 S. H. Fairhurst, K. F. Preston, and L. H. Sutcliffe, Can. J. Chem., 1984, 62, 1124.
- 12 J. Passmore and M. J. Schriver, Inorg. Chem., 1988, 27, 2749.
- 13 R. K. Harris and B. E. Mann, 'NMR and the Periodic Table,' Academic Press Inc., London, 1978, p. 402; M. J. Collins, R. J. Gillespie, J. F. Sawyer, and G. J. Schrobilgen, *Inorg. Chem.*, 1986, 25, 2053, and references therein.
- 14 J. Jander and V. Doetsch, Chem. Ber., 1960, 93, 561,
- 15 H. Garcia-Fernandez, Bull. Soc. Chim. Fr., 1973, 1210.
- N. Walker and D. Stuart, Acta Crystallogr., Sect. A, 1983, 39, 158.
 E. J. Gabe, F. L. Lee, and Y. Le Page, 'The NRCVAX Crystal Structure System. In Crystallographic Computing 3: Data Collection, Structure Determination, Proteins and Databases,' eds. G. M. Sheldrick, C. Kruger, and R. Goddard, Clarendon Press, Oxford, 1985, pp. 167-174.
- 18 'International Tables for Crystallography,' vol. IV, Kynoch Press, Birmingham, 1974.

[§] We found that Se_4N_4 explodes violently on cooling with liquid nitrogen. Therefore, transfer of volatile materials was always carried out at -78 °C.