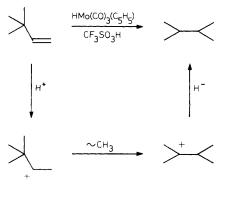
Ionic Hydrogenations using Transition Metal Hydrides. Rapid Hydrogenation of Hindered Alkenes at Low Temperature


R. Morris Bullock* and Brian J. Rappoli

Department of Chemistry, Brookhaven National Laboratory, Upton, NY 11973, U.S.A.

Tetra-substituted, tri-substituted, and 1,1-disubstituted alkenes can be rapidly hydrogenated in high yield at -75 °C using CF₃SO₃H/HMo(CO)₃(C₅H₅) or CF₃SO₃H/HSiEt₃.

In contrast to the hydridic reactivity of early transition metal hydrides¹ such as $(C_5H_5)_2ZrH_2$, many neutral metal hydrides such as HMo(CO)₃(C₅H₅) and HMn(CO)₅ are acidic. For example, HMo(CO)₃(C₅H₅) (p K_a 13.9 in MeCN)² is much more acidic than MeCO₂H (p K_a 22.3 in MeCN) and the kinetics of proton transfer from HMo(CO)₃(C₅H₅) to metal-,³ nitrogen-,³ and carbon-centred⁴ bases have been reported. While hydride can be removed from HMn(CO)₅ by reaction with neat CF₃SO₃H,⁵ or from HMo(CO)₃(C₅H₅) by reaction with Ph₃C⁺,⁶ the hydridic reactivity of these neutral species has not been studied in detail. We now report that HMo-(CO)₃(C₅H₅) can function as a net hydride donor in a reaction that accomplishes the facile stoicheiometric hydrogenation of hindered alkenes at temperatures as low as -75 °C.

Addition of CF_3SO_3H to a solution of $Me_2C=CMe_2$ and $HM(CO)_3(C_5H_5)$ (M = Mo, W) at room temperature causes

Scheme 1

Table 1. Alkene hydrogenations using $(C_5H_5)(CO)_3MH/CF_3SO_3H^{a}$

an immediate colour change from pale yellow to wine-red, and
2,3-dimethylbutane is formed in $>85\%$ yield [equation (1)].
The C=C bonds of tri-substituted alkenes and 1,1-disubsti-
tuted alkenes are also readily hydrogenated (Table 1), giving
high yields of alkane products along with $>85\%$ yields of
red-purple $(C_5H_5)(CO)_3MOSO_2CF_3^7$ (M = Mo, W). At
room temperature, these reactions are complete within the
time of mixing. Low temperature experiments in CD_2Cl_2
indicate that the reactions are $>95\%$ complete within ~ 5
minutes at -75 °C.

$$Me_{2}C=CMe_{2} + HMo(CO)_{3}(C_{5}H_{5}) \xrightarrow{CF_{3}SO_{3}H}_{-75 \text{ °C}, 5 \text{ min}}$$
$$Me_{2}CHCHMe_{2} + (C_{5}H_{5})(CO)_{3}MoOSO_{2}CF_{3} \quad (1)$$

The mechanism of these reactions apparently involves initial formation of a carbocation by protonation of the alkene, followed by trapping of the carbocation by the metal hydride. Evidence for carbocation intermediates comes from the observation of characteristic rearrangements. Ionic hydrogenation of t-butylethylene produces 2,3-dimethylbutane since the initially formed secondary carbocation rearranges to a more stable tertiary carbocation by methyl migration. Only those alkenes which can form a tertiary carbocation (by protonation or protonation followed by rearrangement) have been successfully hydrogenated by this method. While it is clear that the transition metal hydrides function as stoicheiometric hydride donors, it remains to be established whether this involves direct H- delivery or sequential electron transfer/hydrogen atom transfer steps (Scheme 1).

Related ionic hydrogenations involving sequential delivery of H⁺ and H⁻ to organic substrates using CF_3CO_2H/Et_3SiH have been reported, but typical conditions used are several hours at 50 °C.⁸ The $CF_3SO_3H/(C_5H_5)(CO)_3MH$ system

Alkene (conc./м)		CF3SO3H /equiv.	M (equiv.)	Product ^b (% yield)		Conditions: $\theta/^{\circ}C, t/\min$				
Tetra-substituted alkenes										
Me ₂ C=CMe ₂	(0.11)	1.3	W(1.4)	Me ₂ CHCHMe ₂	(85)	−75, 5°				
Me ₂ C=CMe ₂	(0.11)	1.3	Mo(1.4)	Me ₂ CHCHMe ₂	(85)	75, 5°				
Tri-substituted alken	es									
MeCH=C(Me)Et	(0.09)	2.5	W(1.2)	MeCH ₂ CH(Me)Et	(100)	$-80, 10^{d}$				
MeCH=C(Me)Et	(0.13)	1.1	Mo(1.0)	MeCH ₂ CH(Me)Et	(100)	22, 5e				
Me ₂ C=CHEt	(0.09)	1.4	Mo(1.5)	Me ₂ CHCH ₂ Et	(96)	-75, 5°				
1,1-Di-substituted alkenes										
CH ₂ =C(Me)Pr ⁱ	(0.10)	1.4	Mo(1.5)	Me ₂ CHCHMe ₂	(86)	−75, 5°				
$CH_2 = C(Me)Pr^n$	(0.13)	1.2	Mo (1.0)	Me ₂ CHPr ⁿ	(96)	22, 5 ^e				

^a CF₃SO₃H was added to a CD₂Cl₂ solution containing the alkene and $(C_5H_5)(CO)_3MH$. ^b Yields were determined by n.m.r. spectroscopy with an internal standard. Products were identified by comparison of n.m.r. and g.c./m.s. spectra with those of authentic materials. ^c Experiment carried out at -75 °C in a cold bath, then excess of pyridine was added (at -75 °C) to quench the reaction after 5 min. ^d Reaction monitored by n.m.r. spectroscopy at -80 °C. ^e Experiment carried out at room temperature. An immediate colour change was observed, and an n.m.r. spectrum was recorded after about 5 min.

Table 2. Alkene hydrogenations using HSiEt₃/CF₃SO₃H.^a

Alkene (conc./M)		CF3SO3H /equiv.	HSiEt₃ /equiv.	Product (% yield)	
Me ₂ C=CHEt	(0.09)	1.4	1.4	Me ₂ CHCH ₂ Et	(98)
$CH_2 = C(Me)Pr^n$	(0.10)	1.4	1.4	Me ₂ CHPr ⁿ	(93)
$CH_2 = C(Me)Pr^i$	(0.09)	1.4	1.4	Me ₂ CHCHMe ₂	(96)

^a CF₃SO₃H was added to a CD₂Cl₂ solution of the alkene and HSiEt₃ at -75 °C in a cold bath. After 5 min excess of pyridine was added (at -75 °C) to quench the reaction. Yields were determined by n.m.r. spectroscopy with an internal standard.

reported here enables rapid, high yield alkene hydrogenations to be accomplished at temperatures over 100 °C lower than with CF₃CO₂H/Et₃SiH. In the absence of alkenes, HMo- $(CO)_3(C_5H_5)$ reacts with CF_3SO_3H in CD_2Cl_2 at room temperature to give a good yield of $(C_5H_5)(CO)_3MoOSO_2CF_3$ within an hour. The analogous reaction of the tungsten hydride takes several days. It has been claimed⁸ that acids stronger than CF₃CO₂H cannot be used in the ionic hydrogenation of alkenes since they react with HSiEt₃. We have confirmed that CF₃SO₃H reacts quickly with HSiEt₃. Surprisingly, however, this reactivity does not preclude the use of this combination in analogous alkene hydrogenations. We have found that low temperature hydrogenations using CF₃SO₃H/ HSiEt₃ give results comparable to those obtained with $CF_3SO_3H/HMO(CO)_3(C_5H_5)$ (Table 2). Thus, while the demonstration of facile hydride transfer reactions of transition metal hydrides is of mechanistic importance, the ability to hydrogenate alkenes rapidly using readily available CF3SO3H and HSiEt₃ will undoubtedly be of more synthetic use.

This research was carried out at Brookhaven National Laboratory under contract DE-AC02-76CH00016 with the U.S. Department of Energy and supported by its Division of Chemical Sciences, Office of Basic Energy Sciences. We thank Dr. Mark Andrews, Prof. Jack Norton, and Prof. William H. Miles for helpful discussions.

Received, 29th March 1989; Com. 9/01283D

References

- 1 (a) J. A. Labinger and K. H. Komadina, J. Organomet. Chem., 1978, **155**, C25; (b) P. T. Wolczanski and J. E. Bercaw, Acc. Chem. Res., 1980, **13**, 121, and references therein; (c) J. Schwartz and J. A. Labinger, Angew. Chem., Int. Ed. Engl., 1976, **15**, 333.
- 2 E. J. Moore, J. M. Sullivan, and J. R. Norton, J. Am. Chem. Soc., 1986, 108, 2257.
- 3 R. T. Edidin, J. M. Sullivan, and J. R. Norton, J. Am. Chem. Soc., 1987, 109, 3945.
- 4 R. M. Bullock, J. Am. Chem. Soc., 1987, 109, 8087.
- 5 (a) W. C. Trogler, J. Am. Chem. Soc., 1979, 101, 6459; (b) J. Nitschke, S. P. Schmidt, and W. C. Trogler, *Inorg. Chem.*, 1985, 24, 1972.
- 6 (a) W. Beck and K. Schloter, Z. Naturforsch., Teil B, 1978, 33, 1214; (b) W. Beck and K. Sünkel, Chem. Rev., 1988, 88, 1405.
- 7 M. Appel, K. Schloter, J. Heidrich, and W. Beck, J. Organomet. Chem., 1987, **322**, 77.
- 8 D. N. Kursanov, Z. N. Parnes, and N. M. Loim, Synthesis, 1974, 633.