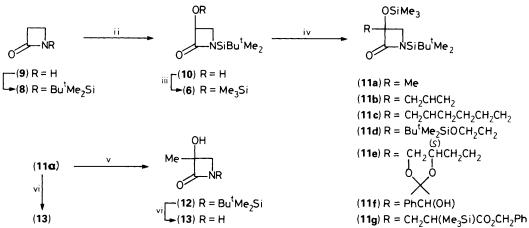
Preparation and Alkylation of N-t-Butyldimethylsilyl-3-trimethylsilyloxyazetidin-2-one

Roland E. Dolle,** Mark J. Hughes, b Chun-Sing Li,* and Lawrence I. Kruse*


a Department of Medicinal Chemistry,

^b Department of Synthetic and Isotope Chemistry, Smith Kline & French Research Limited, The Frythe, Welwyn, Hertfordshire AL6 9AR, U.K.

The title β -lactam (6) is prepared in three steps from commercially available 2-azetidinone (9) (50% overall yield) and can be efficiently alkylated with a variety of electrophiles.

The lethal chlorotic action of tabtoxinine- β -lactam (1),¹ the active constituent of tabtoxin^{1,2} (wildfire toxin) is a well established consequence of the potent and irreversible inactivation of glutamine synthetase (GS).^{2,3} Utilizing glutamate, ammonia, and ATP as substrates, GS initially phosphorylates glutamate affording an enzyme bound carboxylate-phosphate anhydride (2).³ Nucleophilic attack by enzyme bound ammonia on (2) presumably gives rise to a tetrahedral intermediate (3) which subsequently collapses liberating glutamine, P_i , and ADP. The 3-hydroxy-azetidin-2-one unit in (1) represents an efficient carboxylate mimic and when engaged with the enzyme, (1) is phosphorylated yielding a tightly bound analogue (4) [or (5)] of the acyl-phosphate intermediate.¹ By analogy with GS, other pharmacologically significant enzymes, which act as carboxylate kinases, may potentially be inactivated through thoughtful design of modified substrates incorporating this 3-hydroxy-β-lactam unit.⁴ Direct introduc-

Scheme 1. Reagents and conditions: i, see ref. 6; ii, LDA, -78°C, then MoOPH; iii, Me₃SiCl, Et₃N, CH₂Cl₂; iv, LDA, -78°C then 1.5 equiv. electrophile, $-78 \rightarrow 0$ °C, Table 1; v, 9:1 MeOH, HOAc; vi, Buⁿ₄NF; HOAc, THF.

tion of such a structural unit would therefore be most useful.^{4,5,6} As a general solution to this problem, we investigated the synthesis and alkylation of N-t-butyl-dimethylsilyl-3trimethylsilyloxyazetidin-2-one (6) and herein report the utility of (6) as a 3-hydroxy- β -lactam enolate equivalent (7).

N-t-Butyldimethylsilylazetidin-2-one (8) was prepared as previously described⁶ from commercially available (Aldrich) 2-azetidinone (9) (78% yield; Scheme 1). Deprotonation of β -lactam (8) [1.2 equiv. lithium di-isopropylamide (LDA), tetrahydrofuran (THF), -78 °C, 30 min] and hydroxylation with the Vedejs molybdenum peroxide reagent MoOPH7 (1.5 equiv., $-78 \rightarrow 25$ °C, 30 min) gave 3-hydroxy- β -lactam (10) as a white solid[†] [68%; m.p. 52–55 °C; ¹H n.m.r. (CDCl₃) δ 4.95 (m, H-3), 3.49 (t, J 5.5 Hz, H-4), 3.19 (dd, J 5.5, 2.5 Hz, H-4')]. Treating (10) with chlorotrimethylsilane‡ (1.2 equiv. Me₃SiCl, 1.5 equiv. Et₃N, CH₂Cl₂, 25 °C, 1 h) afforded the title β-lactam (6) [97%, b.p. 150 °C (Kugelrohr, 1.0 mmHg); ¹H n.m.r. (CDCl₃) δ 4.88 (dd, J 5.2, 2.5 Hz, H-3)].

Table 1. Reaction of the lithium enolate of (6) with selected electrophiles.

Electrophile ^a	Product	% Yield ^b
MeI	(11a)	73
CH ₂ CHCH ₂ Br	(11b)	85
CH ₂ CHCH ₂ CH ₂ CH ₂ CH ₂ Br	(11c)	52
Bu ^t Me ₂ SiOCH ₂ CH ₂ I	(11d)	83
сн ₂ снсн ₂ сн ₂ і І І О О	(11e)	72
PhCHO CH ₂ C(Me ₃ Si)CO ₂ CH ₂ Ph	(11f) (11g)	65 70°

^a Anion reacted with 1.5 equiv. of the electrophile, see text. ^b Isolated yield. c 3:1 mixture of diastereoisomers.

[†] All new compounds exhibited physical and spectroscopic properties consistent with their structure.

‡ 3-Hydroxyazetidin-2-one (10) reacted with PhCH₂OCH₂Cl under standard conditions affording the corresponding 3-benzyloxymethyl ether (68%). This ether was alkylated with MeI (64%). Use of this protecting group permits sequential N- then O-deprotection.

Alkylation of β -lactam (6) proved straightforward. Thus, deprotonation of (6) using LDA (1.1 equiv., THF, -78 °C, 30 min) was adequate to generate the colourless anion which upon addition of MeI (1.5 equiv., $-78^{\circ}C \rightarrow 0^{\circ}C$, 30 min) provided C-methylated β -lactam (11a) (73%, Scheme 1, Table 1). The lithium anion derived from (6) reacted with other electrophiles including other alkyl halides, aldehydes, and Michael acceptors to give β -lactams (11b) through (11g) in 50-85% isolated yields (Table 1). Sequential removal of the silvl protecting groups in β -lactams (11a-11g) was accomplished $[e.g., (11a) \rightarrow (12) \rightarrow (13); 70\%;$ Scheme 1] by mild acid treatment (1:9 HOAc · · · MeOH, 25 °C, 12 h; O-desilylation) followed by fluoride anion (1.2 equiv. each Bun₄NF and HOAc, 25 °C, 15 min; N-desilvlation). Simultaneous fluoride mediated N- and O-desilvlation was also possible [2.5 equiv. each Buⁿ₄NF and HOAc, 25 °C, 15 min; (11a) \rightarrow (13); 90%].‡

Application of this chemistry to the design and synthesis of novel enzyme inhibitors will be forthcoming.

One of us (C-S. L.) is a postdoctoral fellow at Smith Kline & French.

Received, 31st May 1989; Com. 9/02270H

References

- 1 W. W. Stewart, Nature, 1971, 229, 174; T. F. Uchytil and R. D. Durbin, Experientia, 1980, 36, 301.
- 2 S. L. Sinden and R. D. Durbin, Nature, 1968, 219, 379; C. J. Unkefer, R. E. London, R. D. Durbin, T. F. Uchytil, and P. J. Langston-Unkefer, J. Biol. Chem., 1987, 262, 4994.
- 3 T. D. Meek and J. V. Villafranca, Biochemistry, 1980, 19, 5513.
- 4 W. J. Greenlee, J. P. Springer, and A. A. Patchett, J. Med. Chem., 1989, 32, 165.
- 5 For the construction of the 3-hydroxy-β-lactam unit in the context of the total synthesis of taboxin and tabtoxinine-\beta-lactam see: J. E. Baldwin, M. Otsuka, and P. M. Wallace, Tetrahedron, 1986, 42, 3097; J. Chem. Soc., Chem. Commun., 1985, 1549; J. E. Baldwin, P. D. Bailey, G. Gallacher, M. Otsuka, K. A. Singleton, P. M. Wallace, K. Prout, and W. M. Wolf, Tetrahedron, 1984, 40, 3695; J. E. Baldwin, P. D. Bailey, G. Gallacher, M. Otsuka, K. A. Singleton, and P. M. Wallace, J. Chem. Soc., Chem. Commun., 1983, 1049; D. L. Lee and H. Rapoport, J. Org. Chem., 1975, 40, 3491.
- 6 W. W. Ogilvie and T. Durst, Can. J. Chem., 1988, 66, 304.
- 7 A. T. Daniewski and W. Wojciechowska, Synth. Commun., 1986, 16, 535; E. J. Vedejs, J. Am. Chem. Soc., 1974, 96, 5944.