The Standard Enthalpy of Formation of Nitrogen Tri-iodide Monoammine and the Nitrogen–lodine Bond Energy

R. Hugh Davies, Arthur Finch, and Peter N. Gates

The Bourne Laboratory, Royal Holloway and Bedford New College, University of London, Egham, Surrey TW20 0EX, U.K.

Following three independent solution/reaction calorimetric procedures we report values for the standard enthalpies of formation of NI₃NH₃(c) and NI₃(g) (+146 \pm 6 and +287 \pm 23 kJ mol⁻¹ respectively) and of the nitrogen-iodine bond energy, $E(N-I) = 169 \pm 8$ kJ mol⁻¹.

Nitrogen tri-iodide, easily prepared as the crystalline monoammine NI_3NH_3 , is treacherously unstable, liable to spontaneous explosion, even at 0 °C and under water. Not surprisingly, thermodynamic data are sparse and non-concordant (and have been wrongly transcribed). The monoam-

mine has been the subject of two previous thermochemical studies: a solution/reaction investigation¹ leading to a value of $\Delta_t H^{\circ}(NI_3NH_3) = 146.4 \text{ kJ mol}^{-1}$, and a detonation method² from which we calculate a value of $+130.2 \text{ kJ mol}^{-1}$. Using more recently reported ancillary data we re-calculate the

$$\begin{array}{c|c} \operatorname{NI}_{3}\operatorname{NH}_{3}(c) \xrightarrow{(a)} \operatorname{NI}_{3}\operatorname{NH}_{3}(g) \xrightarrow{(b)} \operatorname{NI}_{3}(g) + \operatorname{NH}_{3}(g) \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\$$

(h)

 $\langle a \rangle$

Scheme 1

Table 1. The standard enthalpy of formation of nitrogen tri-iodide monoammine at 298.15 K.

$\Delta_{\rm f} H^{\circ}/{ m kJ}{ m mol}^{-1}$	Source
$+(146.4 \pm 5.4)$	Ref. 1, original
$+(157.6 \pm 7.5)$	Ref. 1, re-analysis of data
+(130.2)	Ref. 2
$+(145.7\pm5.0)$	Equation (1) (HI)
$+(147.1 \pm 9.0)$	Equation (2) (As_2O_3)
$+(175 \pm 20)$	Equation (3) (synthesis)
$+(146 \pm 6)$	Selected value

former value as +157.6 kJ mol⁻¹. Confidence limits are difficult to ascribe but are clearly large.

In this communication we report the results from three independent solution/reaction procedures; two of these are reductive processes and one a direct synthesis. A disadvantage of the latter is that the product is the black amorphous and more sensitive modification, and not the well-defined crystal-line form. Manipulative details are given at length elsewhere.³

The reductive processes are summarised by the equations (1)—(2). The direct synthesis may be represented by equation (3).

 $NI_{3}NH_{3}(c) + 5H^{+}(aq) + 6I^{-}(aq) \rightarrow 2NH_{4}^{+}(aq) + 3I_{3}^{-}(aq) (1)$

$$\begin{array}{l} NI_{3}NH_{3}(c) + 3As(OH)_{3}(aq) + 3H_{2}O(l) \rightarrow \\ 2NH_{4}^{+}(aq) + 3I^{-}(aq) + H^{+}(aq) + 3AsO(OH)_{3}(aq) \end{array}$$

$$3I_3^{-}(aq) + 5NH_3(aq) \rightarrow NI_3NH_3(c) + 3NH_4^{+}(aq) + 6I^{-}(aq)$$
 (3)

Details of the calorimetric system are presented elsewhere,⁴ and satisfactory check results, before and after a series of runs, were routinely made using the neutralisation of tris hydroxy-aminomethane (THAM) as a standard reaction.

Results are shown in Table 1 and compared with available literature values. Using the cycle shown in Scheme 1, and plausible estimates of the enthalpy changes of processes (a) and (b) [(a) (66 ± 20) kJ mol⁻¹; (b) (29 ± 10) kJ mol⁻¹, respectively] we further calculate values of $\Delta_{\rm f} H^{\circ}(\rm NI_3,g) =$ +(287 ± 23) kJ mol⁻¹ and the bond energy term $E(\rm N-I) =$ +(169 ± 8) kJ mol⁻¹. Computational methods which may be used to generate non-experimental values for these and other parameters are discussed elsewhere.⁵

Received, 4th April 1989; Com. 9/01381D

References

- 1 F. R. Meldrum, Proc. Roy. Soc., 1940, 174, 425.
- 2 M. V. Andrews, J. Schaffer, and D. C. McCain, J. Inorg. Nucl. Chem., 1971, 33, 3945.
- 3 R. H. Davies, Ph.D Thesis, University of London, 1989.
- 4 S. Peake, Ph.D Thesis, University of London, 1976.
- 5 A. Finch and J. P. B. Sandall, J. Asian Chem., in the press.