Insertion of Carbon Disulphide into a Metal–Chlorine Bond; X-Ray Structure of AuCl₂(η^2 -S₂CCl)

Dieter Jentsch,^a Peter G. Jones,^b Carsten Thöne,^b and Einhard Schwarzmann^a

^a Institut für Anorganische Chemie der Universität, Tammannstrasse 4, 3400 Göttingen, Federal Republic of Germany

^b Institut für Anorganische und Analytische Chemie der Technischen Universität, Hagenring 30, 3300 Braunschweig, Federal Republic of Germany

The reaction of CS₂ with gold(\mathfrak{m}) chloride (Au₂Cl₆) leads to the complex AuCl₂(η^2 -S₂CCl), in which the CS₂ has inserted into an Au–Cl bond of a hypothetical monomeric gold(\mathfrak{m}) trichloride intermediate; the structure has been confirmed by *X*-ray crystallography, although the S and Cl atoms could not be distinguished.

Insertion reactions of CS₂ into M–C and M–N bonds are well known and many examples can be found in standard texts.¹ We have now found that CS₂ can insert into an Au–Cl bond of gold(III) chloride to form a complex AuCl₂(η ²-S₂CCl) containing a chlorodithioformate ligand. As far as we are aware, both the insertion mode and the ligand have been unknown until now.

Gold(III) chloride (0.1 mmol Au_2Cl_6) was dissolved in 20 ml carbon disulphide, giving a red solution that gradually became orange on refluxing. After 30 min, some yellow AuCl was

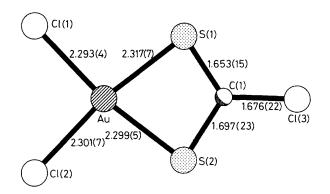


Figure 1. The molecule of $AuCl_2(\eta^2-S_2CCl)$ in the crystal, showing the atom numbering scheme. Radii are arbitrary. Bond lengths are given in Å.

filtered off and the solution concentrated, whereupon orange crystals formed (yield 60%; satisfactory full elemental analysis was obtained for the composition $AuCl_3 \cdot CS_2$). Owing to their limited stability in air, the crystals were sealed in glass capillaries for X-ray measurements.[†]

† Crystal data: CAuCl₃S₂, M = 379.5, monoclinic, space group C2/c, a = 14.895(5), b = 10.325(3), c = 10.765(3) Å, $\beta = 120.19(2)^{\circ}$, U = 1431 Å³, Z = 8, $D_x = 3.52$ g cm⁻³, F(000) = 1344, $\lambda(Mo-K_{\alpha}) = 0.71069$ Å, $\mu = 22.1$ mm⁻¹. Orange prism, $0.24 \times 0.12 \times 0.08$ mm. 3801 Profile-fitted intensities⁴ were measured on a Stoe–Siemens four-circle diffractomer. Merging equivalents gave 1261 unique reflections ($R_{int} 0.050$), of which 881 with $F > 4\sigma(F)$ were used for all calculations (program system SHELX, modified by its author Prof. G. M. Sheldrick). Absorption corrections based on ψ -scans gave transmission factors 0.87–0.95. Cell constants were refined from 20 values of 35 reflections in the range 20–23°. The structure was solved by the heavy-atom method and subjected to full-matrix least-squares refinement on F. The final R value was 0.060, with $R_w 0.047$. The weighting scheme was $w^{-1} = \sigma^2(F) + 0.0003F^2$. 64 Parameters, S 1.5, max. $\Delta/\sigma 0.001$, max. $\Delta\rho 1.5$ e Å⁻³ near Au.

Full details of the structure determination (atom co-ordinates, complete bond lengths and angles, temperature factors, structure factors, libration correction) have been deposited at the Fachinformationszentrum Energie Physik Mathematik, 7514 Eggenstein-Leopold-shafen 2, Federal Republic of Germany. Any request for this material should quote a full literature citation and the reference number CSD 53907. Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the University of Bonn. See Notice to Authors, Issue No. 1.

The structure of the product AuCl₂(η^2 -S₂CCl), as established by the X-ray study, is shown in Figure 1.[‡] The molecule is planar (mean deviation of all atoms 0.007 Å), as would be expected for Au(III), but the bite of the S₂CCl ligand is too small to allow ideal angles at the metal atom [S(1)-Au-S(2)] $75.0(2)^\circ$; the S-C-S angle is also narrow at $114(1)^\circ$]. The C-S bond lengths correspond to the expected bond order of 1.5. Other bond lengths and angles are essentially normal, although only two structures with S₂Cl₂ co-ordination spheres at gold are available for comparison: cf. Au-S 2.303, 2.314; Au-Cl 2.307, 2.314(2) Å in [AuCl₂(SPPh₂NPPh₂S)]² and Au-S 2.264-2.274(4); Au-Cl 2.307-2.319(4) Å in two molecules of $[Cl_2Au(C_4H_6S_4)]$;³ the short Au–S bond lengths in the latter complex may be a consequence of the lack of chelate ring strain (S-Au-S 90.7°) or of the radical anion ligand.

Gold(III) chloride is dimeric; ligands such as pyridine are capable of breaking the chloride bridges to form monomeric adducts LAuCl₃. It is therefore reasonable to suggest that CS_2 reacts initially in a similar manner to form an intermediate (σ -SCSAuCl₃), with the free S atom then inserting into a Au-Cl bond. However, we have not tested this hypothesis.

We thank the Fonds der Chemischen Industrie for financial support.

Received, 4th April 1989; Com. 9/01386E

References

- 1 E.g. N. N. Greenwood and A. Earnshaw, 'Chemistry of the Elements,' Pergamon, 1984, pp. 334-335.
- 2 A. Laguna, M. Laguna, M. N. Fraile, E. Fernandez, and P. G. Jones, Inorg. Chim. Acta, 1988, 150, 233.
- 3 K. Brunn, H. Endres, and J. Weiss, Z. Naturforsch., Teil B, 1988, 43, 224.
- 4 W. Clegg, Acta Crystallogr., Sect. A, 1981, 37, 22.

‡ The X-ray method was not able to distinguish between S and Cl in the presence of a gold atom. To resolve this problem, we attempted to prepare analogous Se or Br derivatives, but were unsuccessful. However, the chemical composition was unambiguously established, and other arrangements of S and Cl atoms are chemically less acceptable; in particular, an *S*,*Cl*-dithioformate ligand with an M-Cl-C structural unit and a non-co-ordinating S atom seems unlikely, especially at a relatively soft Au centre. A referee suggested the latter possibility and we stress that we cannot rule it out on crystallographic grounds alone.