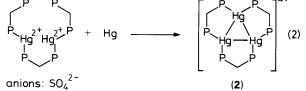
## Synthesis and Structure of Bis[sulphato]tris[µ-bis(diphenylphosphino)methane]triangulo-trimercury

## Barbara Hämmerle,<sup>a</sup> Ernst P. Müller,<sup>b</sup> Dallas L. Wilkinson,<sup>c</sup> Gerhard Müller,<sup>c\*</sup> and Paul Peringer<sup>a\*</sup>

 Institut für Anorganische und Analytische Chemie, Universität Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
Institut für Organische und Pharmazeutische Chemie, Universität Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
Anorganisch-Chemisches Institut, Technische Universität München, Lichtenbergstr. 4, D-8046 Garching, Federal Republic of Germany

Bis[sulphato]tris[ $\mu$ -bis(diphenylphosphino)methane]-*triangulo*-trimercury was prepared from [Hg<sub>2</sub>( $\mu$ -dppm)-(dppm–P)<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub>] [dppm = bis(diphenylphosphino)methane] and elemental Hg, and has Hg–Hg distances of 2.764(1), 2.764(1), and 2.802(1) Å.


The mercury cations  $[Hg_n]^{2+}$ , n = 2,3,4, and the polymeric  $Hg_{2.85}$  AsF<sub>6</sub> contain almost linear mercury atom arrangements and formal mercury oxidation states  $\leq +1.1.2$  We report here on a triangular  $Hg_3^{4+}$  cluster (Figure 1) which contains mercury in the novel formal oxidation state of +4/3. The existence of the cluster is surprising, as soluble mercury derivatives in oxidation states of less than +2 are expected to be unstable towards disproportionation into mercury and mercury(II) in the presence of strong ligands, *e.g.*, phosphines.

HgSO<sub>4</sub> and dppm [dppm = bis(diphenylphosphino)methane] in a molar ratio of 2:3 react in MeOH-CH<sub>2</sub>Cl<sub>2</sub> according to equation (1). Compound (1)<sup>†</sup> reacts with elemental mercury to give (2) as shown in equation (2). Complex (2) was isolated as stable colourless crystals<sup>‡</sup> and is readily soluble in MeOH or MeCN. The structure of (2) was established by X-ray diffraction  $(suitable crystals of (2) \cdot 1.5H_2O were obtained from MeCN-$ 

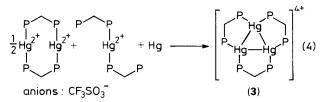
§ Crystal data for (2).1.5 H<sub>2</sub>O: Enraf-Nonius CAD-4 diffractometer, Mo- $K_{\alpha}$  radiation,  $\lambda = 0.71069$  Å, graphite monochromator, T =22 °C.  $C_{75}H_{66}Hg_3O_8P_6S_2 \cdot 1.5H_2O$ , M = 1974.121, monoclinic, space group  $P2_1/n$  (No. 14) with a = 15.069(2), b = 24.025(2), c = 22.405(2)Å,  $\beta = 93.88(1)^{\circ}$ , U = 8092.8 Å<sup>3</sup>,  $D_c = 1.620$  g cm<sup>-3</sup>,  $\mu$ (Mo- $K_{\alpha}$ ) = 58.9 cm<sup>-1</sup>, Z = 4, F(000) = 3828. 15721 Reflections were measured, 14152 of which were unique, and 6782 with  $I \ge 2.0\sigma(I)$  'observed' ( $R_{int}$ = 0.033,  $(\sin\theta/\lambda)_{max} = 0.594 \text{ Å}^{-1}$ , *hkl*-range +18, + 29, ± 28,  $\theta$ -2 $\theta$ scans,  $\Delta \omega = 0.8 + 0.35 \tan \theta$ ). Lorentz-polarisation and empirical absorption corrections were applied (relative transmission: 0.80-1.00). A decay of -16.7% was observed during data collection and was corrected for. The structure was solved by automated Patterson methods (SHELXS-86). Refinement converged at  $R(R_w) = 0.061$  $(0.064), w = 1/\sigma^2(F_0)$  for 355 refined parameters (anisotropic, phenyl rings as idealized rigid hexagons with individual isotropic displacement parameters, all hydrogen atoms calculated, SHELX-76). The residual electron density was +1.58/-0.81e Å-3. Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

<sup>†</sup> Spectroscopic data:  ${}^{31}P$  n.m.r.  $\delta$  48.9, -10.2 (dppm–P), 32.3 p.p.m. (µ-dppm), 193 K, relative to 85% H<sub>3</sub>PO<sub>4</sub>.

M.p. 171 °C decomp., <sup>31</sup>P n.m.r.  $\delta$  42.8 p.p.m., <sup>199</sup>Hg n.m.r.  $\delta$  2552 p.p.m., relative to aqueous Hg(ClO<sub>4</sub>)<sub>2</sub> (1 mmol HgO cm<sup>-3</sup> 60% HClO<sub>4</sub>).



H<sub>2</sub>O), which showed a triangular Hg<sub>3</sub><sup>4+</sup> cluster with all the edges spanned by bridging dppm ligands (Figure 1). The two  $SO_4^{2-}$  counter anions are weakly co-ordinated to the three Hg atoms. An overall  $C_{3\nu}$  symmetry of the cluster is only violated by the conformation of the phenyl rings (not shown in Figure 1) and the five-membered Hg–Hg–P–CH<sub>2</sub>–P rings. Of these, two CH<sub>2</sub> groups are located 'below' the Hg<sub>3</sub> plane and one 'above' (Figure 1).


Related dicationic clusters of palladium and platinum,  $[M_3(\mu-dppm)_3(\mu_3-CO)]^{2+}$  have been reported<sup>3,4</sup> and are used as starting materials for much varied chemistry.<sup>5</sup> A similar structure without formal metal-metal bonds,  $[Ag_3(\mu_3-Br)_2(\mu-dppm)_3]^+$ , is also known.<sup>6</sup>

The Hg-Hg distances in (2) are 2.764(1), 2.764(1), and 2.802(1) Å (the metal-metal distances in the palladium, platinum, and silver complexes mentioned above are 2.576(1) -2.610(2) Å, 2.613(1)-2.650(1) Å, and 3.192(3)-3.362(3) Å, respectively) which compare with a range of 2.4-2.7 Å found in linear mercury polycations, and 3.0 Å in elemental mercury.<sup>1,2</sup> Usually the Hg-Hg bond lengths in various Hg<sub>2</sub><sup>2+</sup> salts centre around 2.5 Å.<sup>1</sup>

Formally, the +4 charge can be considered to result from a  $Hg^{2+}$  cation bridging a  $[Hg-Hg]^{2+}$  unit.  $M_2(\mu-Hg^{II})$  clusters are known<sup>7</sup> where mercury, in the formal oxidation state +2, bridges two transition metals joined by a metal-metal bond. In the light of the present results, it seems possible that the exchange reaction<sup>8</sup> shown in equation (3) involves a  $Hg_3^{4+}$  intermediate.

$$[\mathbf{Hg}-\mathbf{Hg}]^{2+} + \mathbf{Hg}^{2+} \rightleftharpoons \mathbf{Hg}^{2+} + [\mathbf{Hg}-\mathbf{Hg}]^{2+}$$
(3)

A mixture of  $[Hg_2(\mu-dppm)_2](O_3SCF_3)_4^9$  and  $[Hg(dppm-P)_2](O_3SCF_3)_2^{10}$  contained in a solution of  $[Hg(Me_2-SO)_6](O_3SCF_3)_2$  and dppm in the ratio of 2:3, reacts with elemental mercury to yield the trifluoromethanesulphonate (3) (equation 4).



The <sup>31</sup>P chemical shift of (3) ( $\delta$  53.1 p.p.m.) appears at higher frequencies than (2), thus indicating non-co-ordinating CF<sub>3</sub>SO<sub>3</sub><sup>-</sup> anions.<sup>4</sup>

The salt (3) is also formed from  $Hg_2(O_3SCF_3)_2$  and dppm according to equation (5) or by reduction of  $[Hg_2(\mu-dppm)_2](O_3SCF_3)_4$  by for example NaBH<sub>4</sub>.

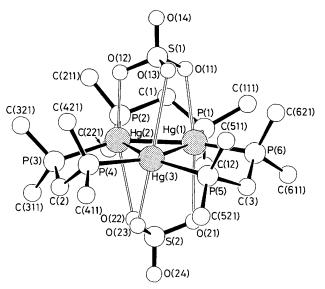



Figure 1. Molecular structure and atomic numbering scheme of (2) (SCHAKAL plot; atoms with arbitrary radii; for clarity, only the *ipso*-carbon atoms of the phenyl rings are drawn, and the hydrogen atoms are omitted). Important distances (Å) and angles (°): Hg(1)–Hg(2) 2.764(1), Hg(1)–Hg(3) 2.764(1), Hg(2)–Hg(3) 2.802(1), Hg(1)–O(1) 2.526(6), Hg(1)–P(6) 2.510(6), Hg(1)–O(11) 2.70(2), Hg(1)–O(21) 2.88(2), Hg(2)–P(2) 2.533(6), Hg(2)–P(3) 2.511(6), Hg(2)–O(12) 2.56(1), Hg(2)–O(22) 2.96(2), Hg(3)–P(4) 2.516(6), Hg(3)–O(13) 3.25(2), Hg(3)–O(23) 2.549(6), Hg(3)–O(13) 3.25(2), Hg(3)–O(23) 2.549(2), Hg(3)–O(23) 2.549(2), Hg(3)–O(23) 2.549(2), Hg(3)–Hg(1)–Hg(3) 60.9(1), Hg(1)–Hg(2)–Hg(3) 59.6(1), Hg(2)–Hg(3)–Hg(1) 59.5(1).

$$2 \operatorname{Hg}_2(O_3 \operatorname{SCF}_3)_2 + 3 \operatorname{P} \operatorname{P} \rightarrow (\mathbf{3}) + \operatorname{Hg}$$
(5)

The analogous methanesulphonate compound (4), (<sup>31</sup>P n.m.r.  $\delta$  48.5 p.p.m.), displays a broadened methyl <sup>1</sup>H n.m.r. spectral signal at 303 K ( $\delta$  2.58). At 203 K, there are two resonances ( $\delta$  2.27 and 2.98, integral ratio 1:1), thus indicating a solution structure of  $[Hg_3(\mu-dppm)_{3^-}(O_3SMe)_2](O_3SMe)_2$ .

This work was supported by Deutsche Forschungsgemeinschaft. We are grateful to Mr. J. Riede for the measurement of the crystallographic data. One of us (D. L. W.) thanks the Alexander-von-Humboldt Foundation for a fellowship.

## Received, 5th June 1989; Com. 9/02337B

## References

- C. A. McAuliffe, 'The Chemistry of Mercury,' McMillan Press, London, 1977; A. F. Wells, 'Structural Inorganic Chemistry,' Clarendon Press, Oxford, 1984.
- 2 R. B. King, Polyhedron, 1988, 7, 1813.
- 3 L. Manojlovic-Muir, K. W. Muir, B. R. Lloyd, and R. J. Puddephatt, J. Chem. Soc., Chem. Commun., 1983, 1336.
- 4 G. Ferguson, B. R. Lloyd, and R. J. Puddephatt, Organometallics, 1986, 5, 344.
- 5 For example, R. Ramachandran, N. C. Payne, and R. J. Puddephatt, J. Chem. Soc., Chem. Commun., 1989, 128; G. Douglas, M. C. Jennings, L. Manojlovic-Muir, K. W. Muir, and R. J. Puddephatt, *ibid.*, 1989, 159.
- 6 A. A. M. Aly, D. Neugebauer, O. Orama, U. Schubert, and H. Schmidbaur, Angew. Chem., Int. Ed. Engl., 1978, 90, 125.
- 7 For example, R. Fahmy, K. King, E. Rosenberg, A. Tiripicchio, and M. Tiripicchio-Camellini, J. Am. Chem. Soc., 1980, 102, 3626; P. R. Sharp, Inorg. Chem., 1986, 25, 4185.
- 8 P. Peringer, J. Chem. Res., 1980, (S) 194; (M) 2757 and references cited therein.
- 9 M. Lusser and P. Peringer, Chem. Ber., 1985, 118, 2140.
- 10 P. Peringer and M. Lusser, Inorg. Chem., 1985, 24, 109.