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Preparative electrochemical oxidation of metallated phenyl prenyl sulphone leads to a previously unknown cyclic 
dimer, the formation of which has been rationalized, providing strong evidence for a radical-anion coupling 
mechanism in outer-sphere oxidative dimerization of a-sulphonyl carbanions. 

Lithiated allylic sulphones, as other a-sulphonyl carbanions, 
can be oxidized by various reagents. a-Halogenation,l and a 
few reactions with oxygen or peroxides leading to conjugated 
aldehydes or ketones2 via sulphinate elimination from the 
a-hydroxysulphone derivative, are known. However most 
oxidation reactions involve transition metal salt catalysis. 
Functionalization, viz. halogen or oxygen transfer, can then 
take place on C-3.394 

When the metal salt itself acts as the oxidant (CuII, FeIII), 
dimerization is often observed;5 coupling can take place on 
C-1 or -3 for each molecule. Three dimers are then expected. 
In the case of y-disubstituted allylic sulphones, only two are 
actually formed, the 3-3’ being the major dimer (Scheme 1). 
On the other hand, in the nickel(I1) catalysed reaction of the 
lithium or magnesium derivative of phenyl prenyl sulphone, 
formation of 2,7-dimethylocta-2,4,6-triene in high yield 
proceeds in an overall 1-1’ coupling.6 

In order to get a better understanding of the role of the 
transition metal salt, we tried to dissociate artificially its ‘pure 
oxidative’ properties (outer-sphere oxidation) from those 
related to the specific environment in its co-ordination shell 
(inner-sphere). For this reason, electrochemical oxidation 
(which is by its nature of pure outer-sphere character) of 
lithiated phenyl prenyl sulphone has been investigated. Cyclic 
voltammetry (C.V.) at 2 V/s of a 2 x l o - 3 ~  solution of this 
lithiated anion in tetrahydrofuran (THF) with Bun4NBF4 

(0.3 M), showed a one-electron oxidation wave at E, -0.53 V 
vs. saturated calomel electrode (SCE). A high scan rate C.V. 
(1000 Vh) allowed a determination of Eo as -0.52 V vs. SCES7 

Preparative scale electrolysis was performed in a divided 
cell; oxidation of the lithiated sulphone (5.7 mmol) in THF (80 
ml) with Bun4NBF4 ( 0 . 3 ~ )  took place on a gold grid, the 
potential of which was -0.40 V. After consumption of about 
500 C (goyo for a one-electron process), the current decreased 
to less than 10% of its initial value. Electrolysis was also 
carried out in liquid ammonia, with potassium bromide as 
supporting electrolyte; the starting sulphone (2.5 mmol) was 

3-3’ dimer, major 1-3’ dimer, minor 

Scheme 1 
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Table 1. Electrochemical oxidative coupling of phenyl prenyl sul- 
phone anion (1). 

dimer C 

Solvent Recovered (1) Dimer 1-3’ Dimer 3-3’ Dimer C 

NH3 19% 16% (22)a - 55% (78)” 
THF 13% 6% (8)a 4% (6)a 62% (86)” 

a Ratio of the particular dimer among the three dimers. 

I I I I 

-2.0 -2.5 
EIV vs. SCE 

Figure 1. Cyclic voltammetry of dimers 3-3’ (2 X 1 0 - 3 ~ )  in THF, 
0.3 M Bun4NBF4 (20 OC): (a) scan rate 5 V s-1, (b) scan rate 0.5 V s-1; 
first scan (-), second scan (. . .). The cyclic voltammetry of dimer C, 
under identical conditions, is superimposed as the dashed curve (----) 
on (a) and (b). 

deprotonated by potassium t-butoxide. The cathodic reaction 
was reduction of a lead rod to anionic amino complexes.8 
After 150 C (62%) had been passed, electrolysis was stopped. 
Results of both experiments are given in Table 1. 

Besides the two dimers which are formed in the transition 
metal salt oxidation, a new compound? is obtained as the 
major product. This cyclic dimer C had never been described 
before and it was important to know more about the 
mechanism of its formation. One-electron electrochemical 
oxidation affords the a-sulphonyl radical from the parent 
anion; however it has been shown that homocoupling of this 
free radical generated by tributyltin hydride reduction of 
a-chloro prenyl sulphone leads to dimers 1-3’ and 3-3’ 
0niy.9 

t Spectroscopic data for dimer C: m.p. 123 “C; 1H n.m.r. (250 MHz, 

(dd, J 8 and 1.7 Hz, lH),  3.41 (dd, J 15 and 8 Hz, lH), 3.99 (dd, J 15 
and 1.7 Hz, lH), 6.77 (s, lH),  7.5-8.1 (m, 10H); 13C n.m.r.: 18.50 

CDC13): 6 0.80 (s, 3H), 0.95 (s, 3H), 0.99 (s, 3H), 1.06 (s, 3H), 2.96 

(CH3), 20.79 (CH3), 25.40 (CH,), 26.21 (CH3), 46.98 (C), 47.48 
(CH), 48.58 (C), 55.12 (CHz), 127.71 (2CH), 127.92 (2CH), 129.00 

(C), 140.46 (C), 154.40 (CH); m/z, 419 ( M  + H), 277 ( M  - PhSOZ), 
(2CH), 129.14 (2CH), 133.39 (CH), 133.58 (CH), 138.54 (C), 139.62 

197, 135, 125; satisfactory elemental analysis. 
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Scheme 3 

An explanation of the puzzling formation of dimer C was 
provided by cyclic voltammetry. Figure 1 shows the voltam- 
mograms corresponding to reduction of dimer 3-3’ at 
different scan rates. At 5 V/s (Figure la) the C.V. exhibits two 
main waves: R1 at E, -2.13 V (followed by a very small wave) 
and a broad wave R2 at about -2.47 V. At lower scan rate 
(Figure lb) the C.V. is more complicated: wave R1 is now 
smaller and what was a nearly invisible wave has now grown to 
become wave R1’. Similarly, wave R2 has decayed to the 
benefit of a new wave R2’. A second and immediate scan 
showed the complete disappearance of wave R1, the C.V. 
being now quite similar to what is obtained at the same scan 
rate for dimer C (Figure lb ,  dashed curve). This behaviour 
clearly shows that dimer 3-3’ is isomerized into dimer C by a 
single electron transfer catalysed reaction. At a high scan rate, 
reduction of dimer 3-3’ is observed (wave Rl) whereas at 
lower scan rates, the catalytic process which started on the 
foot of wave R1 rapidly converts dimer 3-3’ into dimer C, 
leading to a decrease of wave R1 and appearance of wave R1’ 
assigned to reduction of dimer C. No dimer 3-3’ is left upon a 
second scan at 500 mV/s. The reaction process can be 
described as in Scheme 2. 

The radical anion of dimer C formed by proton migration in 
the intermediate Michael adduct can easily transfer an 
electron to a neutral molecule of dimer 3-3’ and then allow the 
catalytic cycle to propagate. 

Feasability of this reaction on a preparative scale has been 
demonstrated by the quasi-quantitative transformation of 0.5 
mmol of dimer 3-3’ into dimer C by a slow addition of a 
catalytic amount of a THF solution of sodium anthracene. The 
best results were obtained when the reductant was added in 
several portions, with a few hours between each addition (a 
typical procedure consisted of five additions of 0.02 mmol of 
sodium anthracene each, in an overall period of 36 h). 
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Formation of dimer C during the oxidative electrolysis of 
phenyl prenyl sulphone anion cannot be explained by this 
reductively promoted isomerisation. Consequently, it is good 
evidence for formation of the radical anion of dimer 3-3’ as an 
intermediate in the electrolysis,$ which must in turn derive 

$ A referee suggested an alternative mechanism for the formation of 
the cyclic dimer, involving a two-electron process induced by addition 
of a nucleophile to the neutral species (Scheme 4). Since the 
electrolysis was conducted in a two-compartment cell , no nucleophile 
generated at the cathode should be present in the anolyte. Therefore, 
the only possible nucleophile present in the anolyte is the sulphonyl 
anion itself; the fact that cyclic dimers are not obtained in the chemical 
oxidations5 [which involve the simultaneous presence of sulphonyl 
anions (reactant) and 3-3’ dimers (product)] makes this hypothesis 
rather unlikely. 

Nu 

H Nu 

Scheme 4 

from the coupling of one radical with the parent anion 
(Scheme 3). Cyclisation of this radical anion must take place 
before its oxidation at the electrode. Such a situation is not 
met during oxidation of this carbanion by high oxidation level 
transition metal salts. 
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