S-Alkylation of α -Thioether Iron Compounds by [Ph₃C]⁺ and [Fe(η -C₅Me₅)(CO)₂(CH₂)]⁺

Véronique Guerchais, Jean-Yves Thépot, and Claude Lapinte

Laboratoire de Chimie des Organometalliques, URA CNRS 415, Universite de Rennes I, Campus de Beaulieu, 35042 Rennes Cedex, France

Treatment of the thiomethyl complexes $[Fe(\eta-C_5Me_5)(CO)_2(CH_2SR)]$ (R = Me or Ph) with $[Ph_3C]^+$ or $[Fe(\eta-C_5Me_5)(CO)_2 (=CH_2)]^+$ results in S-alkylation, affording the sulphonium salts $[Fe(\eta-C_5Me_5)(CO)_2$ - ${C}$ (CH₂S(R)CPh₃)⁺ and ${F}$ e(η -C₅Me₅)(CO)₂CH₂)₂SR)⁺ respectively; the former show promise as agents for methylene transfer to alkenes.

Alkoxy- or alkylthio-alkyl complexes $[M-CH(R)ER$ [']; $E = O$ or *S]* are valuable precursors of carbene complexes.' Both the α -hydrogen and the ER' hetero-group are reactive towards abstracting reagents such as $[Ph_3C]^+$ and, depending on the nature of the ancillary ligands co-ordinated to the metal centre, the reactions have been shown to lead chemospecifically either to the corresponding hetero-substituted carbene complex $[M=C(R)ER']$ or to the alternative M=CHR species.l--8 We report here a new pathway for the reaction **of** thioalkyl complexes with $[Ph_3C]^+$, namely the addition of the

latter to sulphur to give sulphonium salts, and the related addition of the methylene complex $[Fe(\eta-C_5Me_5) (CO)_{2}$ (=CH₂)]⁺.

The complexes $[Fe(C_5Me_5)(CO)_2(CH_2SR)]$ [(1), $R = Ph;$ (2) , $R = Me$ ^{\dagger} were prepared in high yield by the reaction of the ferrate $[Fe(C_5Me_5)(CO)_2]$ ⁻K⁺ with the appropriate chloromethyl thioether.9 Treatment of the phenylthiomethyl complex **(1)** with $[Ph_3C][PF_6]$ in dichloromethane leads to the formation in **60:40** ratio of the sulphonium salt [Fe- $(C_5Me_5)(CO)_2\{CH_2(SPh)CPh_3\}$ [PF₆] (3)[†] and the phenylthiocarbene complex $[Fe(C_5Me_5)(CO)_2 (=CHSPh)][PF_6]$ (4) (Scheme 1). \dagger Attempts to separate these products were unsuccessful, but they were readily identified by their characteristic n.m.r. spectra. Monitoring of the reaction by variable temperature n.m.r. spectroscopy revealed that at -40° C the sulphonium salt **(3)** and the carbene complex **(4)** are produced simultaneously, leading after **3** h at this temperature to the **60:40** mixture, which is retained on warming to room temperature. The concomitant formation of **(3)** and **(4)** indicates that there are two competitive reaction pathways, the $[Ph_3C]^+$ cation acting, unprecedentedly, both as an alkylating agent¹⁰ towards the sulphur atom and as an α -hydride abstractor. This tendency towards [Ph₃C]⁺ addition, *cf.* alkoxymethyl complexes and η-C₅H₅ analogues of the thiomethyl species, can be traced to a combination of the greater stability of sulphonium salts and the increased nucleophilicity of sulphur in the electron-donating η -C₅Me₅ system. **A** still greater tendency is observed for the methyl-

thiomethyl analogue (2), which reacts at -80° C to give only
(by n.m.r.) the adduct $[Fe(C_5Me_5)(CO)_2\{CH_2(S [Fe(C₅Me₅)(CO)₂(CH₂(S-$ Me)CPh₃}][PF₆] (5),[†] isolated in 95% yield. Presumably this specificity is a result of an even greater nucleophilicity of sulphur when Ph is replaced by Me.

The sulphonium salts **(3)** and *(5)* exhibit excellent methylene transfer11 properties, indicating that the sulphide group is readily released from its role as a protecting agent for $[Fe(C_5Me_5)(CO)_2(=CH_2)]^+$. Styrene is converted in 80% yield (by g.c.) to phenylcyclopropane upon treatment with *(5)* in refluxing dioxane for *2* hours. The phenyl analogue **(3)** is less effective, giving a 60% yield of the cyclopropane under the same conditions. The full synthetic scope of these reactions is under investigation. The sulphur atoms in **(1)** and **(2)** are also susceptible to electrophilic attack by the methylene ligand in the transient complex $[Fe(C₅Me₅)$ - $(CO)₂(=CH₂)]+ (6)$. Thus, treatment of a 1:1 mixture of $[Fe(C₅Me₅)(CO)₂(CH₂SR)]$ (1) or (2) and $[Fe(C₅Me₅)-$

t Satisfactory elemental analyses were obtained for compounds **(l), (2), (5), (8),** and **(9).** Selected spectroscopic data: **(l),** 1H n.m.r. (in C_6D_6 : δ 7.48–6.92 (m, 5H, Ph), 2.23 (s, 2H, CH₂), and 1.41 (s, 15H, C_5Me_5); ¹³C{¹H} n.m.r. (in CD₂Cl₂) δ 218.3 (CO), 146.9 *(ipso Ph)*, 128.6 (ortho Ph), 124.4 (meta Ph), 123.5 (para Ph), 96.1 (C₅Me₅), 9.6 (C_5Me_5) , and 8.5 (CH₂), i.r. (in pentane) 2010, 1957 (s, v_{CO}) cm⁻¹. (2) , ¹H n.m.r. (in CD₂Cl₂) δ 2.09 (s, 3H, CH₃), 1.79 (s, 2H, CH₂), and 1.71 (s, 15H, C₅Me₅), ¹³C{¹H} n.m.r. (in CD₂Cl₂) δ 218.9 (CO), 95.9 (C_5Me_5) , 25.4 (CH_3) , 16.2 (CH_2) , and 9.6 (C_5Me_5) ; i.r. (in pentane) $2000, 1952$ (s, v_{CO}) cm⁻¹. (3), ¹H_n.m.r. (in CD₂Cl₂); δ 7.59–7.11 (m, Ph and CPh₃), 2.39 (d, 1H, $^{2}J_{HH}$ 9.8 Hz, CH), 2.31 (d, 1H, $^{2}J_{HH}$ 9.8 Hz, CH'), and 1.71 (s, 15H, C₅Me₅); ¹³C n.m.r. (CD₂Cl₂) δ 216.6 (s, CO), 215.9 (s, CO), 147.5 (t, ²J_{CH} 5.5 Hz, *ipso* Ph), 145.1 (t, ²J_{CH} 7.2 *Hz, ipso CPh*₃), 135.6—127.0 (m, Ph and CPh₃), 97.4 (s, *C₅Me₅)*, 82.4 $(s, \text{ CPh}_3)$, 40.8 (t, ¹J_{CH} 153 Hz, CH₂), and 9.6 (q, ¹J_{CH} 129 Hz, CsMes); i.r. (in CH2CI2) 2000, 1952 **(s, VCO)** cm-' **(4-cis,** major isomer, 90%); ¹H n.m.r. (in CD₂Cl₂): δ 14.76 (s, ¹H, CHPh), 7.78-7.10 (m, Ph), and 1.95 (s, 15H, C₅Me₅); ¹³C n.m.r. (in CD₂Cl₂) 6 319.1 (d, *~JCH* 151 Hz, CHPh), 211.2 **(s,** CO), 141.0 (br. **S,** *ipso* Ph), 131.0-126.7 (m, Ph), 104.3 (s, C₅Me₅), and 9.9 (q, ¹J_{CH} 129 Hz, C₅Me₅); i.r. (in CH₂Cl₂) 2062, 2007 (s, v_{CO}) cm⁻¹. (4-trans, minor isomer, 10%); ¹H n.m.r. (in CD₂Cl₂) δ 14.30 (s, 1H, CHPh), 7.78-7.10 (m, Ph), and 1.87 (s, 15H, C₅Me₅); ¹³C n.m.r. (in CD₂Cl₂): δ 317.0 (d, 1J _{CH} 141 Hz, CHPh), 104.5 (s, C_5 Me₅), and 9.7 (q, 1J _{CH} 129 Hz, C₅Me₅). **(5)**, ¹H n.m.r. (in CD₂Cl₂ at -30 °C): δ 7.47 (m, 15H, C₅Me₅), and 0.53 (d, 1H, ²J_{HH} 9.3 Hz, CH'); ¹³C{¹H} n.m.r. (in CD2C12): 6 216.8 (CO), 215.6 (CO), 137.0 (br **s,** *ips0* Ph), 129.7, 129.5, 129.3 (Ph), 97.9 (C_5 Me₅), 82.4 (CPh₃), 23.2 (CH₃), 13.2 (CH₂), and 9.4 (C_5Me_5); i.r. (KBr, mull) 2005, 1957 (s, v_{CO}) cm⁻¹. (8), ¹H n.m.r. (in CD₂Cl₂): δ 7.60 (m, 5H, Ph), 2.39 (d, 2H, ²J_{HH} 9.7 Hz, CH), 2.29 (d, $2H$, $^{2}J_{HH}$ 9.7 H_{Z} , CH'), and 1.70 (s, 30H, $C_{5}Me_{5}$); ¹³C n.m.r. (in CD₂Cl₂): δ 216.0 (s, CO), 215.5 (s, CO), 134.6 (d, ¹J_{CH} 163 meta Ph), 130.0 (s, *ipso* Ph), 97.9 (s, C₅Me₅), 23.3 (t, ¹J_{CH} 142 Hz, CH₂), and 9.5 (q, 1 J_{CH} 128 Hz, C₅Me₅); i.r. (KBr, mull) 1997, 1947 (s, **v**_{CO}) cm⁻¹. **(9)**, ¹H n.m.r. (in CD₂Cl₂): δ 2.66 (s, 3H, CH₃), 2.16 (d, 2H, ²J_{HH} 9.9 Hz, CH), 1.97 (d, 2H, ²J_{HH} 9.9 Hz, CH'), and 1.78 (s, $30H, C_5Me_5$); ¹³C{¹H} n.m.r. (CD₂Cl₂): δ 217.3 (CO), 216.9 (CO), 97.7 (C_5Me_5), 32.9 (CH₃), 28.5 (CH₂), and 9.5 (C_5Me_5); i.r. (in CH₂Cl₂): 2010, 1952 (s, v_{CO}) cm⁻¹. Ph), 2.22 (s, 3H, CH₃), 1.75 (d, 1H, ^{2J}_{HH} 9.3 Hz, CH), 1.65 (s, 15H, Hz, para Ph), 131.4 (d, ¹J_{CH} 166 Hz, ortho Ph), 131.1 (d, ¹J_{CH} 166 Hz,

 $(CO)₂(CH₂OMe)$] (7) with one equivalent of Me₃SiOSO₂CF₃ [to create **(6)** from **(1)l** affords the binuclear subhonium salts $[\text{Fe}(C_5\text{Me}_5)(CO)_2(\text{CH})_2]_2\text{SR}][PF_6]$ $[(8), R = Ph; (9), R =$ Me][†] (Scheme 2). These two species, thermally- and airstable, are obtained in *ca*. 70% yield, and are novel examples of sulphonium salts disubstituted by first row transition metals. Their formation shows that, despite its great instability,l2 the methylene complex **(6),** when generated under suitable conditions, is an efficient and clean reagent in organometallic syntheses.

We are grateful to **S.** Sinbandhit (C.R.M.P.O.) for helpful discussions and we acknowledge **BASF** for a generous gift of pentacarbonyliron.

Received, 18th April 1989; Corn. 9/01 649J

References

- **1** M. Brookhart and W. B. Studabaker, *Chem. Rev.,* **1987,87,411.**
- **²**M. Brookhart and G. 0. Nelson, J. *Am. Chem. SOC.,* **1977, 99, 6099.**
- **3** A. R. Cutler, J. *Am. Chem. SOC.,* **1979, 101, 604.**
- **4** T. Bodnar and A. R. Cutler, *J. Organomet. Chem.,* **1981, 213,** C31.
- 5 A. G. Constable and J. A. Gladysz, *J. Organomet. Chem.*, 1980, **202, c21.**
- **6 S. E.** Kegley, M. Brookhart, and G. R. Husk, *Organometallics,* **1982, 1, 760.**
- **7** C. Knors, G.-H. Kuo, J. W. Lauher, C. Eigenbrot, and P. Helquist, *Organometallics,* **1987, 6, 988.**
- 8 V. Guerchais, C. Lapinte, J.-Y. Thépot, and L. Toupet, *Organometallics,* **1988, 7, 604.**
- **9** C. Roger, M.-J. Tudoret, V. Guerchais, and C. Lapinte, J. *Organomet. Chem.,* **1989,365, 347.**
- 10 Alkylation of a vinyl complex by the trityl cation has been reported. G. *S.* Bodner, D. E. Smith, W. G. Hatton, P. *C.* Heah, *S.* Georgiou, A. L. Rheingold, **S.** J. Geib, J. **P.** Hutchinson, and J. A. Gladysz, J. *Am. Chem.* **SOC., 1987, 109, 7688.**
- **11** Alkylidene transfer reactions from sulphonium salts have been described; see E. J. O'Connor, *S.* Brandt, and P. Helquist, J. *Am. Chem. SOC.,* **1987, 109, 3739; K.** A. M. Kremer and P. Helquist, J. *Organomet. Chem.,* **1985,285, 231.**
- **12 V.** Guerchais and *C.* Lapinte, J. *Chem. SOC., Chem. Commun.,* **1986, 663.**