Catalytic Formation of an Amide Hydroperoxide and Hydrogen Peroxide using Rhodium Complexes and Dioxygen/Dihydrogen Mixtures

Sujatha N. Gamage and Brian R. James*

Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Y6

A rhodium(III) complex in N_1N_2 -dimethylacetamide solution under a 1 atm O_2/H_2 mixture catalyses concomitant formation of the hydroperoxide MeC(O)N(Me)CH₂OOH and hydrogen peroxide.

Work from this laboratory has reported on the use of ${\rm O_2/H_2}$ mixtures for selective oxidation of dimethyl sulphoxide (dmso) to the sulphone, and cyclo-octene to cyclo-octanone, catalysed by Rh or Ir complexes; the systems are examples of 'reductive' dioxygen activation, where one oxygen atom of ${\rm O_2}$ is reduced to ${\rm H_2O}$ and the second oxygen atom is incorporated into the substrate, as in cytochrome-P450 oxygenations. 1,2 During attempts to detect a putative Rh–OOH intermediate in the sulphoxide oxidations (possibly formed by ${\rm O_2}$ insertion into Rh–H), we chose the basic, polar solvent N,N-dimethylacetamide (dma), because this is known to promote metal hydride formation. The studies revealed instead a selective catalytic oxidation of the solvent to (N-methylacetamido)methyl hydroperoxide, MeC(O)N(Me)CH₂OOH, as well as accompanying hydrogenolysis of ${\rm O_2}$ to ${\rm H_2O_2}$.

Stirred dma solutions of mer-RhCl₃(dmso)₃,⁴ (1.7—7.0) × 10^{-3} M, at 50 °C under O₂/H₂ mixtures at 1 atm pressure, absorb gas at a linear rate for about 1 h, and then the rate slowly decreases, as exemplified in Figure 1. This figure shows also a typical product distribution† as a function of time, and demonstrates that all the products are formed catalytically.

[†] Product compositions were determined by a combination of GC, ¹H NMR, and chemical methods, as well as near IR absorption measurements at 1930 nm for water content.⁵ The hydroperoxide (1) was prepared as a mixture of *cis*- and *trans*-isomers from dma by autoxidation induced by Bu¹OOH.⁶ Full details⁷ will be published elsewhere. H₂O₂ was determined as the difference between 'total peroxides,' measured iodometrically, both with and without prior treatment of the test solution with aqueous catalase solution.⁶

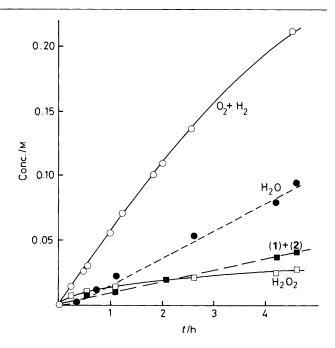


Figure 1. Concentration vs. time for: total gas uptake $O_2 + H_2(\bigcirc)$; water (\blacksquare); hydroperoxide + N-formyl, (1) + (2) (\blacksquare); and hydrogen peroxide (\square), for reaction mixtures containing 5.0×10^{-3} M RhCl₃-(dmso)₃ in dma at 50 °C under a mixture of O_2 (260 Torr) and H_2 (500 Torr, 1.36×10^{-3} M).

The amide oxidation product appears as a mixture of the hydroperoxide RCH_2OOH (1) and the corresponding N-formyl compound RCHO (2) [R = MeC(O)N(Me)-] because (1) readily decomposes to the formyl (e.g. during work-up procedures or under the GC conditions used); maximum ratios of ca. 2:1 hydroperoxide: formyl are obtained for isolated products. The net amide oxidation is envisaged as in Scheme 1.

Of note, H_2O_2 is the major product for the first half-hour of reaction and throughout the reaction there is good mass balance.‡ It seems likely from the product profiles that the H_2O is formed from reaction (1) and by decomposition of the H_2O_2 which approaches a steady-state concentration; this decomposition ($\rightarrow H_2O + 1/2 \ O_2$), presumably Rh-catalysed, does not affect the mass-balance calculations. The reaction then, in the earlier stages, catalytically generates H_2O_2 and (1).

The gas-uptake rates in the absence of either the Rh complex or the H_2 , under corresponding conditions, are negligible. The catalysis is not free-radical in nature; the rates are reproducible (*vide infra*) and are not affected by radical inhibitors, and common autoxidation products from dialkylamides^{6,8} are not seen.§ Use of H_2O_2 or Bu^tO_2H in the presence or absence of $RhCl_3(dmso)_3$ in dma at 50 °C produces amide hydroperoxide, but at much slower rates than when using the O_2/H_2 mixtures (by factors of 5—8).

Considerable mechanistic details have been elucidated. In dma at 50 °C, RhCl₃(dmso)₃ reacts irreversibly with ca. 1 mol. equiv. H₂ at 1 atm ($t_{1/2} \sim 10$ min) to generate a non-hydridic species which must be Rh^I;¶ removal of the H₂ and exposure to 1 atm O₂ instantly generates an *in situ* Rh^{III}(O₂²-) species (i.r. 850 cm⁻¹), which can be formed also from reaction of O₂ with dma solutions of labile Rh^I precursors such as [RhCl (cyclo-octene)₂]₂ in the presence of added dmso (3 mol/Rh) and Cl⁻ (2 mol/Rh) [reaction (1)].

The kinetics of the catalytic reaction were readily ascertained from the initial, maximum rate of the gas-uptake plots (cf. Figure 1); the rates were unaffected by addition of water or a proton source, and were independent of the partial

$$MeC(0)NMe_{2} \xrightarrow{O_{2}} MeC(0)N \xrightarrow{Me} CH_{2}OOH \xrightarrow{-H_{2}O} MeC(0)N \xrightarrow{Me} CHO$$
(1)
(2)
Scheme 1

$$Rh^{III} + H_2 \xrightarrow{-2H^+} Rh^I \xrightarrow{O_2} Rh^{III} \bigcirc_0^{-1}$$
 (1)

Rate of gas uptake =
$$\frac{K[\text{dma}][\text{Rh}]_{\text{total}}}{K[\text{dma}] + [\text{dmso}]} \left(2k_1[\text{H}_2] + k_2\right)$$
(2)

pressure of O₂ from 70 to 600 Torr. The other kinetic dependences are nicely rationalised in terms of the mechanism outlined in Scheme 2, which yields the rate-law shown in equation (2). The K equilibrium accounts for (a) a Rh dependence that decreases from first to half-order with increasing total [Rh], (b) an inverse dependence on added dmso (0.03—0.17 M), and (c) a first order dependence on [Rh] in the presence of excess (0.12 M) of dmso. The rate vs. H_2 plot increases linearly with H₂ pressure (120—700 Torr) but gives an intercept, the k_2 term, at zero H_2 . Analyses of the rate dependences at 50 °C give internally consistent values for k_1 $(1.05 \text{ mol}^{-1} \text{ dm}^3 \text{ s}^{-1}), k_2 (5 \times 10^{-4} \text{ s}^{-1}), \text{ and } K (4 \times 10^{-3}).$ The k_1 and k_2 rate constants, measured by consumption of O_2 and H₂, allow for calculation of the initial rates of formation of H₂O₂ and (1), respectively, and agreement with data from product distribution curves (cf. Figure 1) is excellent. The kinetically determined K value is comparable with that measured directly previously for a corresponding equilibrium with RhCl₃(dmso)₃ in dma (0.01 ± 0.005) .⁴

A plausible route for the oxygen transfer to the amide is shown in Scheme 2. There is precedent in the literature for selective activation of C–H α to the nitrogen of a co-ordinated amide, 9 and for abstraction of a C–H hydrogen of coordinated substrate by co-ordinated peroxide with reincorporation of the $-O_2H$. 10

The solution hydrogenolysis of O_2 to give H_2O_2 has precedent only in the patent literature where again homogeneous platinum metal catalysts, but in two-phase systems, have been utilised.¹¹ Heterolytic cleavage of H_2 by the Rh peroxide intermediate could generate RhH(OOH), which subsequently reductively eliminates H_2O_2 with generation of Rh^I and continuation of the catalytic cycle *via* rapid O_2 uptake (Scheme 2).

It is clear that H_2 is not being used as an O_2 -coreductant in the amide oxidation and, indeed, once the RhIII-peroxide has been generated [reaction (1)], the suggested mechanism for the amide oxidation cycle requires no further H₂ consumption. Nevertheless, if the in situ-formed Rh^{III}(O_2^{2-}) in dma is subjected to 1 atm O₂ alone at 50 °C, the rate of O₂ uptake is negligible and the solution colour darkens somewhat within 30 min; catalytic activity can be regenerated by limited treatment with H_2 ,¶ prior to admitting the O_2/H_2 atmosphere. The role of H₂ appears to be to retard conversion of the active peroxide catalyst into inactive forms, which we believe are di- or poly-nuclear species. There are several reports¹² on the aggregation of rhodium-based autoxidation catalysts to inactive forms; a bridged-peroxide is a much poorer nucleophile than a terminal peroxide, 13 and ability to abstract protons is decreased. Earlier work from this laboratory¹⁴ has reported on the reaction of a Rh₄Cl₄(CO)₄(O₂)₂(PR₃)₂ species with H₂ in the presence of excess of phosphine to give RhCl(CO)(PR₃)₂ with probable liberation of H₂O₂. Such deactivation 'aggregation phenomena' could readily be incorporated into Scheme 2.

$$Rh^{III}(O_2^{2^-})(dmso) + dma$$

$$H_2$$
 H_2
 H_2
 H_2
 H_3
 H_4
 H_2
 H_3
 H_4
 H_4
 H_4
 H_5
 H_6
 H_6

Scheme 2

[‡] E.g. in Figure 1, after 4.6 h the total gas uptake measured $(H_2 + O_2)$ is 0.214 m; the concentrations of H_2O_2 , (1), (2), and H_2O , are 0.026, 0.012, 0.029, and 0.094 m, respectively, and these require the respective consumption of 0.052, 0.012, 0.029, and 0.098 m gas uptake, i.e. a total of 0.191 m, in good agreement with the measured uptake [of the 0.094 m H_2O , 0.029 m comes from the conversion (1) \rightarrow (2), Scheme 1, leaving 0.065 m to be formed from $H_2 + 1/2 O_2$, i.e. via 0.0975 m gas uptake].

[§] Typically formaldehyde, formic acid, acetic acid, dimethylamine, and CO₂, formed *via* a photolysis or higher-temperature reaction.

 $[\]P$ In the absence of stabilising ligands, these Rh^I solutions under H₂ slowly precipitate metal.

We thank the Natural Sciences and Engineering Council of Canada for financial support, and Johnson Matthey Ltd. for the loan of rhodium.

Received, 2nd June 1989; Com. 9/02316J

References

- M. T. Atlay, M. Preece, G. Strukul, and B. R. James, *Can. J. Chem.*, 1983, 61, 1332; B. R. James, R. H. Morris, and P. Kvintovics, *ibid.*, 1986, 64, 897.
- 2 I. Tabushi, Coord. Chem. Rev., 1988, 86, 1.
- 3 B. R. James, in 'Comprehensive Organometallic Chemistry,' vol. 8, eds. G. Wilkinson, F. G. A. Stone, and E. W. Abel, Pergamon, Oxford, 1982, ch. 51.
- 4 B. R. James and R. H. Morris, Can. J. Chem., 1980, 58, 399.
- 5 D. K. Keyworth, Talanta, 1961, 8, 461.
- 6 B. F. Sager, J. Chem. Soc. (B), 1967, 428; 1047.

- 7 S. N. Gamage, Ph.D. dissertation, University of British Columbia, Vancouver, 1985.
- 8 N. N. Pozdeeva, T. I. Sapacheva, and A. L. Aleksandrov, *Izv. Akad. Nauk. SSSR.*, *Ser. Khim.*, 1976, 1738.
- 9 J. M. Brown and P. J. Maddox, J. Chem. Soc., Chem. Commun., 1987, 1278.
- 10 B. R. James, Adv. Chem. Ser., 1980, 191, 253.
- 11 For example: F. Moseley and P. N. Dyer, U. S. Pat. 4,336,240, 1982; R. C. Michaelson, U.S. Pat. 4,347,231, 1982; U.S. Pat. 4, 347,232, 1982.
- E. C. Nyberg and R. S. Drago, J. Am. Chem. Soc., 1981, 103, 4966; M. T. Atlay, L. R. Gahan, K. Kite, K. Moss, and G. Read, J. Mol. Catal., 1980, 7, 31; H. Mimoun, M. M. Perez Machirant, and I. Seree de Roch, J. Am. Chem. Soc., 1978, 100, 5437; G. Read and P. J. C. Walker, J. Chem. Soc., Dalton Trans., 1979, 883.
- 13 M. H. Gubelmann and A. F. Williams, Struct. Bonding, 1983, 55,
- 14 W. R. Cullen, B. R. James, and G. Strukul, *Inorg. Chem.*, 1978, 17, 484; *Can. J. Chem.*, 1978, 13, 1965.