Photochemical Chlorodecarboxylation *via* **an Electron Transfer Mechanism**

Keiji Okada," Kazushige Okamoto, and Masaji Oda*

Department of Chemistry, Faculty of Science, Osaka University, To yonaka, Osaka 560, Japan

A new method of chlorodecarboxylation of carboxylic acids *via* N-acyloxyphthalimides is developed; the reaction proceeds upon irradiation of N-acyloxyphthalimides in the presence of **1,4-diazabicycl0[2.2.2]octane** in **ButOH-CCl4-H20** (53 : **42** : **5** v/v) in moderate to high yields.

Decarboxylation of carboxylic acids leading to alkanes or haloalkanes (Hunsdiecker reaction) is a useful reaction. Several modifications of this procedure have been published recently, notably an excellent method of iododecarboxylation reported by Suarez *et al.* Barton *et al.* reported an elegant method of chloro- or bromo-decarboxylation which proceeds *via* radical addition to the O-ester of thiohydroxamic acid derivatives using halotrichloromethane as a halogen source.² More recently, Hasebe and Tsuchiya reported a simple photolytic chlorodecarboxylation method *via* benzophenone oxime esters.³ We have recently reported a new photochemical method of radical production from carboxylic acids *via* N-acyloxyphthalimides which are readily available in high yields from various carboxylic acids and N-hydroxyphthalimide, using dicyclohexylcarbodiimide (DCC) .4 We now report a photochemical chlorodecarboxylation method for carboxylic acids using N-acyloxyphthalimides.

Irradiation of a solution of N-acyloxyphthalimide **(la)** and **1,4-diazabicyclo[2.2.2]octane** (DABCO) in a mixed solvent [Bu^tOH-CC_{l4}-H₂O (53:42:5 v/v)] through a Pyrex filter with a 100 W high pressure Hg lamp under argon for **3** h gave the corresponding decarboxylated chloride **(2a) (74%),** phthalimide (95%), and hexachloroethane **(70%).** In control experiments, similar irradiation without DABCO or water gave **(2a)** in poorer yields (runs 2 and **3** in Table 1). The reaction is general and widely applicable to various primary, secondary, and tertiary aliphatic carboxylic acid derivatives **(la-j)** in moderate to high yields (56-98%, Table 1, Scheme 1). The alkenic functional group is stable in this transformation (run 5) and can take part in radical cyclization⁵ when appropriately

Table 1. Photochemical chlorodecarboxylation of various N-acyloxyphthalimides $(1a-j)$ in Bu^tOH-CCl₄-H₂O $(53:42:5 \text{ v/v})$.^a

	Run Substrate	Irr. time /h	[DABCO] 1×10^{-3} M	Decarboxylated Phthalimide chloride/%		1%
1	(1a)	3	8.8	(2a)	74	95
\overline{c}	(1a)	3		(2a)	12 _b	
3 ^c	(1a)	3	8.7	(2a)	43c,d	
4	(1b)	\overline{c}	19.0	(2b)	94	93
5	(1c)	3	9.3	(2c)	68	82
6	(1d)	4	19.4	(2d)	96	85
7	(1e)	4	16.9	(2e)	76	81
8	(1f)	5	19.4	(2f)	51	73
9	(1g)	4	8.4	(2g)	86	
10	(1h)	10	8.9	(2h)	98	
11	$(1i)$ ^e	3	9.7	(2i)	59	89
12	(1j)	3	8.8	(2j)	10	90
				(2k)	56	
13	$(1j)^f$	3	8.9	$\bf (2j)$	4f	
				(2k)	52 ^f	

^aIrradiation was performed with a 100 W high pressure Hg lamp through a Pyrex filter under argon at [substrate] = $3.0-3.2 \times 10^{-3}$ M unless otherwise noted. ^b With 60% recovery of (1a). ^c In the absence of water. **d** With 43% recovery of (1a). e [(1i)] = *ca.* 1×10^{-3} M. ^f In Bu^tOH-CCl₄-H₂O (85:10:5 v/v).

located. Thus, similar irradiation of **(lj)** produced the cyclized chloride **(2k)** *(56%)* along with the noncyclized chloride **(2j)** (10%). Decrease of carbon tetrachloride content from 42 to 10% increases the selectivity of the cyclization $(52:4)$, with slightly poorer yield.

The quantum yield of the chlorodecarboxylation for **(la)** is 1.4×10^{-4} at [DABCO] = 9.5×10^{-3} M and $[(1a)] = 5.1 \times$ 10^{-3} M.[†] The reaction was almost completely quenched by dissolved oxygen under aerated conditions or by piperylene $(k_q \tau = 2.6 \times 10^3 \text{ dm}^3 \text{ mol}^{-1})$ under argon, indicating that the triplet of **(1)** is the reactive state. A plausible reaction

Scheme 1. *Reagents and conditions: i, hv, DABCO, ButOH-CCl₄-* $H₂O$.

Scheme 2. *Reagents and conditions: i, hv; ii, DABCO; iii, H₂O; iv,* $CCl₄$.

t The quantum yield was determined in Bu^tOH-CCl₄-H₂O (53:42:5) at 313 nm excitation using a potassium ferrioxalate actinometer.

mechanism is shown in Scheme **2.** The electron transfer from **DABCO** to the triplet excited state of **(1)** produces the anion radical **(3),** which would be protonated by water to give the radical **(4).** The cleavage of the weak N-0 bond at the P-position to the radical centre gives the carboxyl radical **(9,** which in turn undergoes decarboxylation and chlorine abstraction from carbon tetrachloride to afford the chloride **(2).** Electron transfer from DABCO to the triplet state of **(1)** is calculated to be an exothermic process $(\Delta G - 15)$ kcal $mol⁻¹$.⁶ \ddagger

f Calculated according to ref. 6 using the value of dielectric constant of the present mixed solvent (ϵ 6.05 at 20 °C). The reduction peak potential of (1a) was determined to be -1.39 V *vs.* standard calomel electrode (SCE). The triplet energy of N-acyloxyphthalimides was assumed to be *ca*. 70 kcal mol⁻¹, a typical value for *N*-alkylphthalimides: see J. D. Coyle, G. L. Newport, and A. Harriman, *J. Chem. Soc., Perkin Trans. 2,* 1978, 133; 1979, 799.

To conclude, we have developed a useful method of chlorodecarboxylation of carboxylic acids through readily available N-acyloxyphthalimides. Further clarification of the mechanistic details **is** currently in progress.

Received, 22nd May 1989; Corn. 91021 41 H

Refer en ces

- 1 **J.** I. Concepci6n, C. G. Francisco, R. Freire, R. Hernandez, **J. A.** Salazar, and E. Suárez, *J. Org. Chem.*, 1986, 51, 402.
- 2 D. H. R. Barton, D. Crich, and W. B. Motherwell, *Tetrahedron Lett.,* 1983, **24,** 4979.
- 3 M. Hasebe and T. Tsuchiya, *Tetrahedron Lett.,* 1988, 29,6287.
- 4 **K.** Okada, K. Okamoto, and M. Oda, *J. Am. Chem. SOC.,* 1988,
- **110,** 8736.
- *5* D. P. Curran, *Synthesis,* 1988, 417, 489.
- 6 D. Rehm and **A.** Weller, *Isr. J. Chem.,* 1970, **8,** 295; **A.** Weller, *Z. Phys. Chem. Neue. Folge,* 1982, **133,** 93.