Synthesis of the Ethyl Oxalyl Tetracarbonyl Iron Anion $[(CO)_4FeCOCO_2Et]^-$, its Methylation at the Metal into $(CO)_4Fe(Me)(COCO_2Et)$ and Further Carbon–Carbon Coupling into Ethyl Pyruvate

Sylviane Sabo-Etienne,* Anne-Marie Larsonneur, and Hervé des Abbayes*

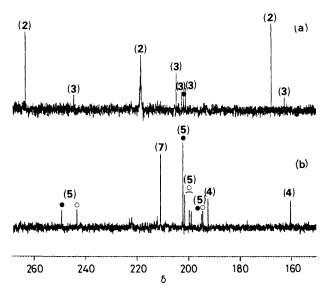
Laboratoire de Chimie Organique des Eléments de Transition, URA CNRS 322, Université de Bretagne Occidentale, 29287 Brest Cedex, France

The stable anion $[(CO)_4FeCOCO_2Et]^-$ (2) [obtained after reaction of EtOCOCOCI on Na₂Fe(CO)₄] is methylated at the metal by reaction with MeSO₃CF₃ at -50 °C to give $(CO)_4Fe(Me)(COCO_2Et)$ (3) characterized *in situ* by ¹H and ¹³C NMR; at -30 °C it decomposes according to two pathways: reductive elimination into MeCOCO₂Et (4) and Fe₃(CO)₁₂ and rearrangement into $(CO)_4Fe(COMe)(CO_2Et)$ (5) which decarbonylates at +5 °C before giving MeCO₂Et (6) and Fe(CO)₅.

The discovery of the double carbonylation reaction, essentially with cobalt¹ or palladium² as the catalysts, has spurred the synthesis of several organometallic models (1) to shed light on one of the key steps of the process: the XY coupling into an α,β -dicarbonylated organic product [equation (1)], (X = R, CO, COR; Y = COR, CO₂R', CONR'₂, COCOR', COCO₂R'; R,R' = alkyl)

$$[M] \begin{array}{c} X & a - C - C - b \\ Y & \longrightarrow & \| & \| \\ 0 & 0 \end{array}$$
(1)

For M = Pd, X = COR and Y = CONR'₂, a coupling into an α -ketoamide is observed, but indirectly, since X and Y are in the unfavourable relative *trans* position.³ The few available complexes bearing Y ligands such as COCOR' or COCO₂R' generally undergo a decarbonylation process which precludes the incorporation, as such, of this Y ligand in an organic substrate ($M = Co, {}^4M = Pd^5$), although the reverse reaction (*i.e.* Y = COR' \longrightarrow COCOR') has been described very recently under particular conditions for $M = Mn.^6$ No catalytic double carbonylation with iron has been observed so far.[†] Furthermore, studies on the rare available models (1) did not provide any significant information about the reaction step [equation (1)]; (CO)₄Fe(CORf)₂ (Rf: perfluoroalkyl), which has the favourable *cis* geometry, decarbonylates rapidly⁸ and there is no evidence for any alkylation at the iron centre on the


[†] However, a stoicheiometric formal insertion of an α-diketo group into a strained molecule *via* an acyl tetracarbonyl ferracycle has been reported.⁷

Complexes	T/°C	¹ H(300 MHz)/δ			¹³ C(75.47 MHz)/δ					
		CH ₃	CH ₂ CH ₃ ^b	CH ₂ CH ₃ b	CO acyl	CO term.	CO ₂	CH ₂ CH ₃	CH ₂ CH ₃	CH ₃
(2) (3)	$-50 \\ -50$	0.57	1.21 1.28	4.05 ~4.2°	263.1 244.5	218.4 204.5(:2) 202.4(:1) 200.9(:1)	167.8 162.7	60.0 62.5	13.9 13.8	-6.7
(5) trans (5) cis	$-30 \\ -30$	2.56 2.68	1.14 1.23	3.96 4.10	249.2 ^d 243.3 ^d	201.9 201.2(:2) 199.5(:1) 198.7(:1)	194.8 ^d 194.3 ^d	60.6 ^d 61.8 ^d	14.3 ^d 14.4 ^d	53.9e 48.1

Table 1. NMR data for compounds (2), (3), and (5).^a

^a In CD₂Cl₂ except otherwise stated. ^b ³J_{H-H} 7.2 Hz. ^c Partially obscured by MeSO₃CF₃. ^d *cis-trans* Attribution not ascertained. ^e In CDCl₃ prior to decomposition.

Scheme 1. Reagents and conditions: i, ClCOCO₂Et, THF, -10° C; ii, THF, room temperature, (Ph₃P)₂N+Cl⁻ followed by recrystallisation from CH₂Cl₂-hexane.

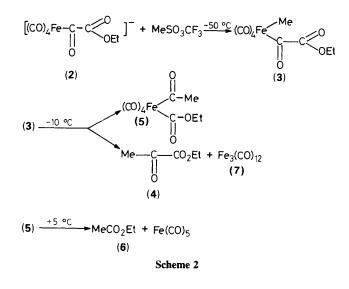


Figure 1. ¹³C NMR spectra (75.47 MHz; CD_2Cl_2) in the carbonyl region (a) -50 °C, [\bullet = traces of (5) *trans*]; (b) at -10 °C, complexes *cis*-(5) = \bigcirc and *trans*-(5) = \bullet , MeCOCO₂Et (4), and Fe₃(CO)₁₂ (7).

anion [(CO)₄FeCOCOBu^t]⁻ gained after a tedious synthesis.9

Recently, we showed that the $[(CO)_4FeCO_2Me]^-$ anion could be alkylated at the metal to finally give an ester.¹⁰ We report here a very simple and efficient synthesis of the $[(CO)_4FeCOCO_2Et]^-$ anion (2), the first evidence for its alkylation at the iron centre followed by decomposition into an α -ketoester.

Reaction of ethyl oxalyl chloride (1.5 mmol) with Na₂Fe(CO)₄, dioxan (1.5 mmol) in tetrahydrofuran (THF) (30 ml) at -10 °C for 30 min, followed by metathesis with bis(triphenylphosphoranilydene)ammonium chloride PPN⁺-Cl⁻, led to isolation of the anion (2) (as a PPN⁺ salt), in 64% yield (Scheme 1). This pink crystalline compound was found to be indefinitely stable at room temperature. IR and ¹³C NMR spectroscopies highlighted the presence of both

 $Fe(CO)_4$ and $COCO_2Et$ groups. \ddagger Anion (2) proved to be less reactive than the $[(CO)_4Fe(CO_2Me)]^-$ anion¹⁰ towards electrophiles since it did not react with MeI or PhCH₂Br. Its reaction with the powerful alkylating agent MeSO₃CF₃ was carefully monitored by high resolution ¹H and ¹³C NMR under a N₂ atmosphere in CD_2Cl_2 . At -50 °C, the reaction is very slow and after 3 h, only one product is formed and characterized as the alkyl complex (3) in 6% yield vs. (2) from NMR integration. After 6 h at -45 °C, (3) is formed in 15% yield vs. (2) with traces of (4) and (5) (see below). Methylation at the metal is clearly demonstrated by the very high field resonances (δ CH₃ 0.57, CH₃ -6.7) recorded in the ¹H and 13 C NMR spectra. The 13 C resonances at δ 244.5 and 162.7 are unequivocally attributed to the ethyl oxalyl group (see Scheme 2, Table 1 and Figure 1). Furthermore, the signals observed for the terminal carbonyl ligands suggest a cis-disposition for the two organic ligands.

When the temperature is raised to -10 °C, the reaction

^{‡ (2);} Satisfactory elemental analysis (C,H,N). IR (CH₂Cl₂) ν (CO) 2023m, 1930sh, 1905vs (br.), 1716m, 1582m cm⁻¹; ¹H NMR (CD₂Cl₂; 300 MHz; 18 °C) δ 4.08 (q, CH₂) and 1.23 (t, CH₃, ³J_{H-H} 7.2 Hz); ¹³C NMR (CD₂Cl₂; 75.47 MHz; 18 °C) δ 262.2 (FeCOCO₂Et), 219.3 [Fe(CO)₄], 168.1 (FeCOCO₂Et), 60.0 (CO₂CH₂CH₃), 14.4 (CO₂CH₂CH₃).

progresses faster and two different pathways are observed (Scheme 2). Firstly, reductive elimination yields ethyl pyruvate (4) and $Fe_3(CO)_{12}$.§ Secondly, rearrangement into an acyl alkoxycarbonyl complex (5). The latter is observed as a mixture of cis and trans isomers stable at this temperature. The most obvious evidence for this isomerism is given by the observation in ¹³C NMR of the signals of the terminal CO ligands; a single signal for the trans isomer and three for the cis isomer (2:1:1 ratio). Other kinds of carbon atoms (acyl, ester, methyl, ethyl) also give two signals, one for each isomer. These observations are confirmed by ¹H NMR for the methyl and ethyl groups.¶ At the intermediate temperature of -30 °C, (2), (3), (4), and (5), are observed altogether. Finally, above $+5 \,^{\circ}C$, (5) decomposes rapidly and quantitatively into ethyl acetate (6) and Fe(CO)₅ (Scheme 2)§ NMR data for (2), (3) and (5) are gathered in Table 1.

From these experiments it can be inferred that firstly, anion (2) is stable towards decarbonylation. Secondly, it can be alkylated at the metal to give the neutral *cis* methyl ethyloxalyl complex (3). Thirdly, there are two chemical paths for (3); one is its isomerization into (5), the other is the reductive elimination of the two ligands into ethyl pyruvate, providing the first evidence of the X-Y coupling without decarbonylation for X = Me and Y = COCO₂Et [reaction (1)]. Fourthly, ethyl pyruvate does not come from X-Y coupling on (5) which decarbonylates prior to reductive elimination to give ethyl acetate.

§ In the reaction, the organic compounds (4) and (6) were identified by ¹H, ¹³C NMR, IR spectra and GC by comparison to authentic samples. In particular for (4); δ CH₃ (2.42), CO (192.3), CO₂ (160.3) and for (6); δ CH₃ (1.98), CO₂ (170.2). Fe₃(CO)₁₂ [δ CO (210.9)] and Fe(CO)₅ [δ CO (208.4)] were identified by ¹³C NMR and IR spectra.

¶ The *cis:trans* ratio was found variable with temperature: 0.6 at -30 °C and 0.8 at -10 °C.

We gratefully acknowledge Dr. R. Pichon for his skilful collaboration with the NMR measurements.

Received, 11th July, 1989; Com. 9/02937K

References

- Some leading references: R. Perron, French patent No. 2297200, 1975; H. Alper and H. des Abbayes, J. Organomet. Chem., 1977, 134, C11; H. des Abbayes and A. Buloup, J. Chem. Soc., Chem. Commun., 1978, 1090; M. Foa and F. Francalanci, J. Mol. Catal., 1987, 41, 89.
- Some leading references: F. Ozawa, N. Kawasaki, H. Okamoto, T. Yamamoto, and A. Yamamoto, Organometallics, 1987, 6, 1640; F. Ozawa, H. Soyama, H. Yanagihara, I. Aoyama, H. Takino, K. Izawa, T. Yamamoto, and A. Yamamoto. J. Am. Chem. Soc., 1985, 107, 3235; T. A. Kobayashi, H. Yamashita, T. Sakakura, and M. Tanaka, J. Mol. Catal., 1987, 41, 379; H. Yamashita, T. A. Kobayashi, T. Sakakura, and M. Tanaka, J. Organomet. Chem., 1988, 356, 125.
- 3 F. Ozawa, L. Huang, and A. Yamamoto, J. Organomet. Chem., 1987, 334, C9.
- 4 D. Milstein and J. L. Huckaby, J. Am. Chem. Soc., 1982, 104, 6150.
- 5 A. Sen, J. T. Chen, W. M. Vetter, and R. R. Whittle, J. Am. Chem. Soc., 1987, 109, 148; F. Ozawa, T. Sugimoto, T. Yamamoto, and A. Yamamoto, Organometallics, 1984, 3, 692; J. Fayos, E. Dobrzynski, R. J. Angelici, and J. Clardy, J. Organomet. Chem., 1973, 59, C33.
- 6 J. B. Sheridan, J. R. Johnson, B. M. Handwerker, and G. L. Geoffroy, *Organometallics*, 1988, 7, 2404.
- 7 R. Yamagushi, S. Tokita, Y. Takeda, and M. Kawanisi, J. Chem. Soc., Chem. Commun., 1985, 1285.
- 8 D. W. Hensley, W. L. Wurster, and R. P. Stewart, Jr., Inorg. Chem., 1981, 20, 645.
- 9 K. H. Dotz, U. Wenicker, G. Muller, H. G. Alt, and D. Seyferth, Organometallics, 1986, 5, 2570.
- 10 P. Laurent, S. Sabo-Etienne, A. M. Larsonneur, and H. des Abbayes, J. Chem. Soc., Chem. Commun., 1988, 929.