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Ruthenium-catalysed Atom-transfer Cyclisation of N-(Cyclohex-2-enyl)-a-chloro-a- 
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(+ )-Pretazettine 
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The hydroindole (18), which previously served as a key intermediate in the total synthesis of (?)-haemanthidine (2) 
and (&)-pretazettine (I), has been prepared in a highly stereocontrolled manner by a reaction sequence involving a 
ruthenium-catalysed atom-transfer cyclisation of an a-chloro sulphide. 

Pretazettine (1) is one of the most complex molecules of the 
crinine class of Amaryllidaceae alkaloids that contain a 
cis-3a-arylhydroindole ring system as the basic structural 
element. 1 Its potent antiviral and anticancer properties1 
render this molecule an attractive and challenging synthetic 
target.2.3 Haemanthidine (2), another member of the same 
family, is convertible into (I) in a single step by treatment with 
methyl iodide followed by a workup under mildly basic 
conditions,J and hence much effort has gone into the synthesis 
of (2) as the pivotal relay to pretazettine ( l ) . * , 5  We now report 
a concise, stereoselective synthesis of the 3-(pivaloyloxy) 
hydroindole (18), a key intermediate in Martin's total 
synthesis of (2) as well as (1),* using a ruthenium-catalysed 
atom-transfer cyclisation of a-chloro sulphides as a key step. 

We initiated our investigation by examining the possibility 
of an alkene cyclisation of the a-chloro sulphide (3) under 
reported atom-transfer conditions.6 A benzene solution of (3) 
was heated in the presence of 10 mol% of RuC12(PPh3)3 in a 
sealed tube at 140°C for 30 min; this gave the lactam (4)t in 

t Satisfactory elemental analyses or high resolution mass spectra, and 
spectroscopic data were obtained for all new compounds. 

67% yield. The 1H NMR spectrum of (4)5 showed its chlorine 
at C-4 to be equatorial,$ implying that the intramolecular 
addition of the a-chloro sulphide (3) to its alkenic bond 
proceeded in an anti-mode. This result can be explained by 
assuming the radical intermediate ( 5 ) ,  in which the chlorine 
atom attacks the convex face of this cis-fused bicyclic system to 
lead to the anti-addition product (4). 

The key chloro sulphide (12) having a methoxy group and 
relative stereochemistry characteristic of the C ring in (1) was 
prepared from the amino alcohol (9), which in turn was 

$lH NMR spectral data (CDC13, 300 MHz) for the cyclisation products 
(4) and (13) are as follows (diagnostic data only). For (4): 
6 2.38 (1 H ,  ddd, J 7.8, 5.3, 4.9 Hz, H-3a), 3.66 (1 H .  q, J 5.3 Hz, 
H-7a),3.78(1H,d,J4.9Hz7H-3),4.00(1H,ddd,J8.5,7.8,4.0Hz, 
H-4). For (13): 6 3.69 (1 H ,  tt, J 11.0,4.0Hz, H-6), 3.97 (1 H,  t , J 3 . 4  
Hz, H-7a), 4.13 (1 H,  s ,  H-3), 4.74 (1 H,  t ,  J 3 . 5  Hz, H-4). 

0 Stereochemistry of the 3P-phenylthio group of (4) was confirmed by 
direct comparison of its dechlorinated compound [Bu3SnH, azoiso- 
butyronitrile (AIBN), benzene, reflux] with an authentic sample 
prepared independently by us. Details will be reported in due course. 
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Scheme 1. Reagents and conditions: i, R u C ~ ~ ( P P ~ ~ ) ~ ,  benzene, 140 "C. 

synthesised in a highly stereocontrolled manner from the 
cyclohexene (6) by the method recently developed (Scheme 

The cyclization of (12) was effected by heating in the 
presence of 20 mol% of R u C ~ ~ ( P P ~ ~ ) ~  at 150°C for 2.5 h to 
give the expected lactam (13) in 57% yield accompanied by an 
unidentified product. In contrast to (4), the chlorine of (13) 
was found to be axia1,Y which suggested the intramolecular 
addition of (12) occurs in a syn-mode. The steric bulk of the 
angular aryl group is apparently sufficient to direct the 
chlorine atom to the concave face of the radical intermediate. 

Oxidation of (13) with m-chloroperbenzoic acid followed by 
sequential treatment of the resultant sulphoxide (14) with 
(CF3C0)20 and then with a saturated NaHC03 solution 
afforded the dioxo compound (15) in 87% yield from (13). 
Heating of (15) with 1,8-diazabicyclo[5.4.O]undec-7-ene 
(DBU) in acetonitrile at 160°C in a sealed tube for 3 h 
furnished the alkene (16) in 48% yield. 

Reduction of (16) with LiAIH4 proceeded in a highly 
stereoselective manner, where the reducing agent attacks the 
convex face, giving the 3P-alcohol(17)3a in 63% isolated yield 
as a single stereoisomer. No 3a-alcohol was detected ('H 
NMR spectroscopy and TLC) in the crude reaction mixture. 

Finally, acylation of (17) with pivaloyl chloride afforded, in 
83% yield, the ester (18), which had spectral characteristics 
identical to those of previously recorded spectra of compound 
(18). Since compound (18) was previously converted in four 
steps into (_+)-haemanthidine (2) ,2 the present preparation of 
(18) constitutes a formal total synthesis of the two title 
alkaloids. 

2).7 

fi The stereochemistry of the phenylthio group is unknown at this 
stage. 
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Ar = 3,4,-Methylenedioxyphenyl 

Scheme 2. Reagents and conditions: i ,  N-bromosuccinimide, H20 ,  
MeCN, (7a) (73%), (7b) (18%); ii, MeNH2, MeOH, lOO"C, quant.; 
iii, PhSCH2COC1, NEt,, CH2C12, 80% ; iv, p-MeC6H4S03H, ben- 
zene, reflux, 76% ; v, N-chlorosuccinimide, CC14, quant. ; vi, RuC12- 
(PPh,),, benzene, 150 "C, 57%. 
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Ar = 3,4-Methylenedioxyphenyl 

Scheme 3. Reagents and conditions: i, m-C1C6H4CO3H, CHzC12, 
quant; ii, (CF3C0)20, 2,6-lutidine, CH2CI2, reflux, then sat. 
NaHCO,, 87%; iii, DBU, MeCN, 160"C, 48%; iv, LiAlH4, tetra- 
hydrofuran, reflux, 63%; v, ButCOCl, pyridine, 30--40"C, 83%. 
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