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Ruthenium-catalysed Atom-transfer Cyclisation of N-(Cyclohex-2-enyl)-a-chloro-a-
(phenylthio)acetamides. A Formal Total Synthesis of (+)-Haemanthidine and

(*)-Pretazettine

Hiroyuki Ishibashi,* Hiroshi Nakatani, Satoshi lwami, Tatsunori Sato, Nobuyuki Nakamura, and Masazumi

lkeda*

Kyoto Pharmaceutical University, Misasagi, Yamashina, Kyoto 607, Japan

The hydroindole (18), which previously served as a key intermediate in the total synthesis of (+)-haemanthidine (2)
and (*)-pretazettine (1), has been prepared in a highly stereocontrolled manner by a reaction sequence involving a
ruthenium-catalysed atom-transfer cyclisation of an a-chloro sulphide.

Pretazettine (1) is one of the most complex molecules of the
crinine class of Amaryllidaceae alkaloids that contain a
cis-3a-arylhydroindole ring system as the basic structural
element.! Its potent antiviral and anticancer properties!
render this molecule an attractive and challenging synthetic
target.2-> Haemanthidine (2), another member of the same
family, is convertible into (1) in a single step by treatment with
methyl iodide followed by a workup under mildly basic
conditions,* and hence much effort has gone into the synthesis
of (2) as the pivotal relay to pretazettine (1).2-> We now report
a concise, stereoselective synthesis of the 3-(pivaloyloxy)
hydroindole (18), a key intermediate in Martin’s total
synthesis of (2) as well as (1),2 using a ruthenium-catalysed
atom-transfer cyclisation of a-chloro sulphides as a key step.

We initiated our investigation by examining the possibility
of an alkene cyclisation of the w«-chloro sulphide (3) under
reported atom-transfer conditions. A benzene solution of (3)
was heated in the presence of 10 mol% of RuCl,(PPh;); in a
sealed tube at 140 °C for 30 min; this gave the lactam (4)1 in

+ Satisfactory elemental analyses or high resolution mass spectra, and
spectroscopic data were obtained for all new compounds.

67% yield. The 'TH NMR spectrum of (4)% showed its chlorine
at C-4 to be equatorial,§ implying that the intramolecular
addition of the w«-chloro sulphide (3) to its alkenic bond
proceeded in an anti-mode. This result can be explained by
assuming the radical intermediate (5), in which the chlorine
atom attacks the convex face of this cis-fused bicyclic system to
lead to the anti-addition product (4).

The key chloro sulphide (12) having a methoxy group and
relative stereochemistry characteristic of the C ring in (1) was
prepared from the amino alcohol (9), which in turn was

1'"H NMR spectral data (CDCl;, 300 MHz) for the cyclisation products
(4) and (13) are as follows (diagnostic data only). For (4):
3 2.38 (1 H, ddd, J 7.8, 5.3, 4.9 Hz, H-3a), 3.66 (1 H, q, J 5.3 Hz,
H-7a),3.78 (1H, d, J 4.9 Hz, H-3), 4.00 (1 H, ddd, /8.5, 7.8, 4.0 Hz,
H-4). For (13): 6 3.69 (1 H, tt. J 11.0, 4.0 Hz, H-6), 3.97 (1 H, t,J 3.4
Hz, H-7a), 4.13 (1 H, s, H-3), 4.74 (1 H, t, J 3.5 Hz, H-4).

§ Stereochemistry of the 38-phenylthio group of (4) was confirmed by
direct comparison of its dechlorinated compound [Bu;SnH, azoiso-
butyronitrile (AIBN), benzene, reflux] with an authentic sample
prepared independently by us. Details will be reported in due course.
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Scheme 1. Reagents and conditions: i, RuCly(PPh;)s, benzene, 140 °C.

synthesised in a highly stereocontrolled manner from the
cyclohexene (6) by the method recently developed (Scheme
2).7
The cyclization of (12) was effected by heating in the
presence of 20 mol% of RuCl,(PPh;); at 150°C for 2.5 h to
give the expected lactam (13) in 57% yield accompanied by an
unidentified product. In contrast to (4), the chlorine of (13)
was found to be axial,§ which suggested the intramolecular
addition of (12) occurs in a syn-mode. The steric bulk of the
angular aryl group is apparently sufficient to direct the
chlorine atom to the concave face of the radical intermediate.

Oxidation of (13) with m-chloroperbenzoic acid followed by
sequential treatment of the resultant sulphoxide (14) with
(CF3C0),0 and then with a saturated NaHCO; solution
afforded the dioxo compound (15) in 87% yield from (13).
Heating of (15) with 1,8-diazabicyclo[5.4.0]Jundec-7-ene
(DBU) in acetonitrile at 160°C in a sealed tube for 3 h
furnished the alkene (16) in 48% yield.

Reduction of (16) with LiAlH, proceeded in a highly
stereoselective manner, where the reducing agent attacks the
convex face, giving the 3f-alcohol (17)32 in 63% isolated yield
as a single stereoisomer. No 3w-alcohol was detected (‘H
NMR spectroscopy and TLC) in the crude reaction mixture.

Finally, acylation of (17) with pivaloyl chloride afforded, in
83% yield, the ester (18), which had spectral characteristics
identical to those of previously recorded spectra of compound
(18). Since compound (18) was previously converted in four
steps into (+)-haemanthidine (2),2 the present preparation of
(18) constitutes a formal total synthesis of the two title
alkaloids.

§ The stereochemistry of the phenylthio group is unknown at this
stage.
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Scheme 2. Reagents and conditions: i, N-bromosuccinimide, H,O,
MeCN, (7a) (73%), (7b) (18%); ii, MeNH,, MeOH, 100°C, quant.;
iii, PhASCH,COC!, NEt;, CH,Cl,, 80%; iv, p-MeCsH,SO:H, ben-
zene, reflux, 76%; v, N-chlorosuccinimide, CCly, quant.; vi, RuCl,-
(PPhs);, benzene, 150°C, 57%.
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Scheme 3. Reagents and conditions: i, m-CIC¢H,COsH, CH,Cl,,
quant; ii, (CF;CO),0, 2,6-lutidine, CH,Cl,, reflux, then sat.
NaHCO;, 87%; iii, DBU, MeCN, 160°C, 48%; iv, LiAlH,, tetra-
hydrofuran, reflux, 63%; v, ButCOCI, pyridine, 30—40°C, 83%.
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