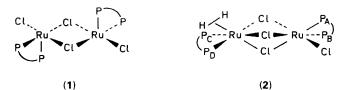
Characterisation and Properties of the Dinuclear Ruthenium Molecular Hydrogen Complex [$(\eta^2-H_2)(dppb)Ru(\mu-Cl)_3RuCl(dppb)$]; dppb = Ph₂P(CH₂)₄PPh₂

Ajey M. Joshi and Brian R. James*

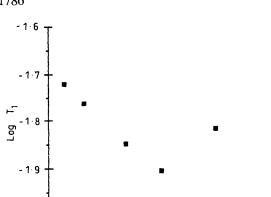
Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Y6

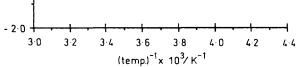
Dihydrogen adds reversibly to the dimeric Ru^{II} complex [{RuCl(dppb)(μ -Cl)}₂] (1), where dppb = 1,4-bis(diphenyl-phosphino)butane, to give the remarkably simple molecular hydrogen title complex (2) which is an effective catalyst for hydrogenations utilising H₂ and for transfer hydrogenations from propan-2-ol; the η^2 -H₂ ligand (with an H–H distance of 0.86 Å as estimated by ¹H NMR T_1 data) is replaceable by other ligands including N₂.


Molecular dihydrogen complexes of transition metals continue to be of intense interest from both theoretical aspects and their potential role in catalytic hydrogenation and dehydrogenation of organic substrates.¹ Dinuclear η^2 -H₂ complexes are rare; the four thus far reported all contain Ru-phosphine moieties, and also possess bridging as well as classical, terminal hydrides.² We now describe the title dinuclear Ru(η^2 -H₂) complex which is uniquely simple in having no other ancillary hydride ligands, and thus complicating H-exchange behaviour is absent.

Interaction of [{RuCl(dppb)(μ -Cl)}₂], (1),³ with 1 atm of H₂ in benzene or toluene at ambient temperature leads to the rapid, reversible *in situ* partial formation of the η^2 -H₂ complex (2), equation (1). The ¹H NMR spectrum of (2) in [²H₈]toluene shows a broad resonance ($w_{1/2}$ 30 Hz) at δ -11.02 with a

typically short T_1 relaxation time of 14 ms at 292 K,[†] which is assigned to the η^{2} -H₂ ligand;^{4,5} the resonance disappears if the H₂ atmosphere is removed under vacuum, or replaced by argon. The temperature dependence of T_1 is shown in Figure 1, the η^{2} -H₂ resonance also broadening with decrease in temperature. The V-shaped plot, as predicted by theory,⁴ is observed only rarely, and certainly not with the other dinuclear Ru(η^{2} -H₂) complexes,² because rapid exchange at higher temperatures among various hydrogens present results in an averaging of their T_1 values.


The ${}^{31}P{}^{1}H$ NMR spectrum of the same solution of (1) under H₂ shows, in addition to the single AB pattern of (1),³ two other independent AB patterns of equal integrated


$$[\{\operatorname{RuCl}(\operatorname{dppb})(\mu-\operatorname{Cl})\}_2] + \operatorname{H}_2 \rightleftharpoons (1)$$

$$\begin{array}{c} [(\eta^2 - H_2)(dppb)Ru(\mu - Cl)_3Ru(Cl)(dppb)] & (1) \\ (2) \end{array}$$

⁺ T_1 data were obtained by the inversion-recovery method⁴ on a Varian XL (300 MHz) FT NMR spectrometer equipped with a variable temperature probe.

Figure 1. Plot of log T_1 vs. (temp.)⁻¹. Points (T/K, T_1/ms , $w_{1/2}$ Hz) correspond to: 324, 19 ± 2, 19; 313, 17 ± 1, 24; 292, 14 ± 1, 30; 276, 12 ± 1, 36; 255, 15 ± 2, 61; 235, 19 ± 2, 68.

intensity which are assigned to (2).^{\ddagger} We have observed two very similar sets of ${}^{31}P{}^{1}H$ NMR patterns for other related and isolable, triply chloro-bridged complexes [(L)(dppb) $Ru(\mu-Cl)_3RuCl(dppb)$] [L = CO, (3); Me₂SO, (4); Me₂CO, (5)] also prepared from (1).^{\ddagger} The ³¹P spectrum indicates ca. 60% conversion of (1) to (2) with 1 atm of H_2 . The existence of two relatively sharp, independent sets of ${}^{31}P$ signals for (2) means that exchange between bound and free H_2 is slow on the NMR time-scale and thus, in the absence of inter- or intra-molecular hydrogen exchange, the broadness of the η^2 -H₂ resonance may be due to internal rotation of the η^2 -H₂ ligand as suggested by others;⁶ further broadening of the signal on cooling implies a slowing of the internal motion. From the minimum T_1 value of 12 ms, assuming a $\pm 20\%$ error (Figure 1), an internuclear H–H distance of 0.86 ± 0.02 Å may be calculated following the method described by Hamilton and Crabtree,⁴ and using the correction factor suggested by Morris' group⁷ for systems when the η^2 -H₂ rotation is relatively rapid. The bond distance is comparable with that determined by X-ray crystallography, 0.80(6) Å, within one of the related dinuclear Ru species.²

Of particular interest, (1) catalyses, presumably *via* (2), isotope exchange between H₂ and D₂ to give HD and the η^2 -HD isotopomer of (2) in C₆D₆ at 20 °C. The ¹H NMR signal of the HD ligand is a relatively narrow 1 : 1 : 1 triplet (¹J_{HD} 29.4 Hz) of 1 : 2 : 1 triplets (*cis*, ²J_{HP} 7.5 Hz) centred at δ -11.07 (Figure 2); the resonance due to dissolved HD appears as a 1 : 1 : 1 triplet (¹J_{HD} 42.7 Hz) at δ 4.43. While ¹J_{HD} for the isotopomer is within the range 18–33 Hz reported for other η^2 -HD complexes, resolution of further coupling to phosphorus (²J_{HP}) or other nuclei is unusual.^{6,8}

Complex (1) also reacts reversibly with 1 atm of N_2 to give a dinitrogen complex (6), with an equilibrium conversion of *ca*.

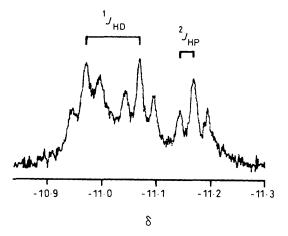


Figure 2. High-field ¹H NMR spectrum (300 MHz, C_6D_6 , 20 °C) for the η^2 -HD isotopomer of (2), formed *in situ* by leaving (1) overnight under 1.2 atm of H₂ and 1.8 atm of D₂.

70% at 20 °C. The spectroscopic data[‡] are consistent with a structure akin to (2) with the η^2 -H₂ replaced by σ -N₂.

At 1.0 mM, (1) catalyses the H₂-hydrogenation of alkenes under mild conditions (1 atm H₂, 30 °C); for example, in *N*,*N*-dimethylacetamide solution, styrene (0.42 M) is completely reduced to ethylbenzene with an initial turn-over number of ~450 h⁻¹ and (1) can then be recovered unchanged. Finally, (1) is also an effective catalyst for transfer hydrogenation of acetophenone; a turn-over frequency of 350 h⁻¹ is realised at 50 °C using 2.25 mM of (1) with KOH (9 mM) in propan-2-ol containing ketone (1.5 M).

The kinetics and mechanisms of the catalytic hydrogenation reactions and the H/D exchange are amenable to detailed study, and it should be possible to evaluate the possible role played by the dinuclear η^2 -H₂ species.

We thank the Natural Sciences and Engineering Research Council of Canada for financial support, and Johnson Matthey Ltd., for the loan of ruthenium.

Received, 30th August 1989; Com. 9/03666K

References

- For example: M. S. Chinn, D. M. Heinekey, N. G. Payne, and C. D. Sofield, Organometallics, 1989, 8, 1824; D. Morton, D. J. Cole-Hamilton, I. D. Utuk, M. Paneque-Sosa, and M. Lopez-Poveda, J. Chem. Soc., Dalton Trans., 1989, 489; G. Jia and D. W. Meek, J. Am. Chem. Soc., 1989, 111, 757; T. Arliguie and B. Chaudret, J. Chem. Soc., Chem. Commun., 1989, 155; C. Bianchini, C. Mealli, A. Meli, M. Peruzzini, and F. Zanobini, J. Am. Chem. Soc., 1988, 110, 8725; M. A. Esteruelas, E. Sola, L. A. Oro, U. Meyer, and H. Werner, Angew. Chem., Int. Ed. Engl., 1988, 27, 1563.
- 2 C. Hampton, W. R. Cullen, and B. R. James, J. Am. Chem. Soc., 1988, **110**, 6918; T. Arliguie, B. Chaudret, R. H. Morris, and A. Sella, *Inorg. Chem.*, 1988, **27**, 598.
- B. R. James, A. Pacheco, S. J. Rettig, I. S. Thorburn, R. C. Ball, and J. A. Ibers, *J. Mol. Catal.*, 1987, 41, 147.
 D. G. Hamilton and R. H. Crabtree, *J. Am. Chem. Soc.*, 1988, 110,
- 4 D. G. Hamilton and R. H. Crabtree, J. Am. Chem. Soc., 1988, 110, 4126.
- 5 F. A. Cotton and R. L. Luck, *Inorg. Chem.*, 1989, 28, 6; S. Antoniutti, G. Albertin, P. Amendola, and E. Bordignon, *J. Chem. Soc., Chem. Commun.*, 1989, 229.
- 6 G. J. Kubas, Acc. Chem. Res., 1988, 21, 120; R. H. Crabtree and D. F. Hamilton, Adv. Organomet. Chem., 1988, 28, 299.
- 7 M. T. Bautista, K. A. Earl, P. A. Maltby, R. H. Morris, C. T. Schweitzer, and A. Sella, J. Am. Chem. Soc., 1988, 110, 7031.
- 8 F. A. Cotton and R. L. Luck, Inorg. Chem., 1989, 28, 2181.

^{‡ 31}P{¹H} *NMR data*: δ_A, δ_B p.p.m. (²*J* Hz) relative to 85% H₃PO₄ (121.42 MHz, C₆D₆, 20 °C). For (1): 64.0, 54.9 (47.3). For (2): 53.7, 53.2 (44.4); 53.8, 38.3 (33.8). For (3) (v_{CO} 1977 cm⁻¹, Nujol): 53.8, 53.3 (45.2); 46.9, 33.1 (29.6). For (4) (v_{SO} 1090 cm⁻¹, Nujol): 53.6, 50.6 (43.8); 41.6, 28.9 (32.1). For (5) (v_{CO} 1645 cm⁻¹, Nujol): 52.8, 51.5 (43.7); 50.1, 48.7 (38.4). For (6) (v_{N2} 2175 cm⁻¹, CH₂Cl₂): 54.4, 53.5 (45.1); 46.6, 36.8 (32.1). For (2)--(6), the relatively invariant lower field AB quartet and the more variable higher field quartet are assigned to P_A-P_B and P_C-P_D, respectively, of structures akin to (2) (see text). The geometrical arrangement of ligands within (2) is based on an *X*-ray crystallographic structure of (4), which shows the geometry drawn for (2) but with η²-H₂ replaced by an S-bonded Me₂SO (to be published).