Syntheses of α -Linked Derivatives of *N*-Acetyl Glucosamine and Gal- β (1-3)GalNAc (T Antigen) directly with the Natural *N*-Acetyl Protecting Group

André Lubineau,* Hugues Bienaymé, and Joëlle Le Gallic

Laboratoire de Chimie Organique Multifonctionnelle (URA CNRS 0462), Université Paris-sud, 91405 Orsay Cedex, France

 α -Linked spacer arms, suitable for coupling on a protein carrier, have been introduced directly on GlcNAc and on Gal- β (1-3)GalNAc in a 1,2-cis fashion through a new procedure involving a completely stereoselective Michael addition of the anomeric sodium alcoholate onto β -tosyloxy acrolein prepared in situ from the sodium salt of malonaldehyde and tosyl chloride.

In N-glycoproteins, the anchoring point of the carbohydrate chain on the protein backbone is the disaccharide Gal-β-(1-3) GalNac (the T antigen), which is covalently linked to serine or threonine through an α -galactosaminyl linkage. The finding that this structure occurs in tumour-associated antigen has caused a resurgence of interest in its investigation. 1 Synthetic antigens related to this disaccharide require conjugation with a biologically appropriate carrier through a spacer arm α -linked to the terminal N-acetyl galactosamine unit, for immunological application. However, the direct introduction of a linker on 2-acetamido sugars in a 1,2-cis fashion was said up to now to be impossible, and for instance, α -linked galactosamines are presently synthesized through azidochlorination of galactal followed by glycosidation which bypass the presence of the 2-acetamido participating group of *N*-acetyl galactosamine.^{2,3} We describe in this communication a new methodology which allows such synthesis and which could possibly be used with oligosaccharides obtained from natural sources, which already possess the N-acetyl group, which cannot be removed for further elaboration.

Starting from 1,3,4,6-tetra-*O*-acetyl-2-acetamido-2-deoxyβ-p-glucopyranose (**1a**),⁴ 1-*O*-deacetylation by hydrazine acetate⁵ in *N*,*N*-dimethylformamide (DMF) (2 h, 20 °C, 60%) or, better, by transesterification using a lipase⁶ from *Aspergil*-

lus niger (AP6 from Amano, AcOEt-PriOH-H₂O, 65:20:1, 93%) gave (2a) as a mixture of anomers. Michael addition of the sodium salt derived from (2a) [HNa, tetrahydrofuran (THF)] onto β -tosyloxy acrolein⁷ (2 equiv.) prepared in situ from the sodium salt of malonaldehyde and tosyl chloride in THF, afforded the pure α -anomer (3a)† in 83% yield with complete stereoselectivity: no trace of the β -anomer was detected in the reaction conducted at room temp. for 1 h in the presence of a small amount of 18-crown-6 (1.0 mol %). The anomeric configuration was ascertained using ¹H NMR spectroscopy where H-1 exhibits a typical small coupling constant (3.5 Hz). We must emphasize at this stage the exceptional behaviour of 2-acetamido sugars in this type of reaction, as we have shown⁸ that the sodium salt derived from 2,3,4,6-tetra-O-acetyl-D-glucopyranose gave a mixture of α and β-anomers (in a 2:1 ratio). Anomeric alcoholates have already been used for glycoside synthesis in reactions with triflate or trichloroacetonitrile to give, in the latter case, trichloroacetimidates which are precursors for 1,2-trans-glycoside synthesis in the case of the participating 2-O-acetyl group.9 However, the method has not received any application in the case of sugars having a 2-acetamido protecting group because the corresponding trichloroacetimidate led to nonreactive intermediates such as oxazolines during activation

$$\begin{array}{c} R^{1} \\ OAc \\ R^{3}O \\ OAc \\ NHAc \\ \end{array}$$

$$\begin{array}{c} (2) \\ a; R^{1} = H, R^{2} = OAc, R^{3} = Ac \\ b; R^{1} = OAc, R^{2} = H, R^{3} = perAc - \beta - D - Gal \\ \end{array}$$

$$\begin{array}{c} (3a,b) \\ Ph_{3}P = CHCO_{2}Et \\ \hline \\ AcNH \\ D; R^{1} = OA, R^{3} = H \\ b; R^{1} = OH, R^{3} = H \\ b; R^{1} = OH, R^{2} = OH, R^{3} = H \\ b; R^{1} = OH, R^{2} = OH, R^{3} = H \\ b; R^{1} = OH, R^{2} = H, R^{3} = \beta - D - Gal \\ \end{array}$$

$$(5a,b) \\ (Ts = SO_{2}C_{6}H_{4}Me - p)$$

Scheme 1

under the usual acid catalysis.¹⁰ Then, the three following reactions were conducted as usual. Wittig alkenation of the unsaturated aldehyde (3a) with ethoxycarbonyl methylene-phosphorane (1.4 equiv.) in THF afforded the diene (4a)† in 86% yield as a single *E, E*-isomer. Catalytic reduction (H₂/Pd, AcOEt) gave (5a)† in a quantitative yield. Finally, Zemplen deacetylation (EtONa/EtOH) afforded (6a)† in 92% yield. The sugar was then linked to a protein carrier (BSA) *via* the acyl azide method¹¹ to give an artifical antigen bearing twenty one glucosamine units per mole of protein [as determined by the modified Morgan–Elson reaction¹² following acid hydrolysis of the synthetic glycoprotein in hydrochloric acid (4 m) for 4 h at 100 °C].

Armed with these positive results, the derivatization of the disaccharide Gal- β (1-3)GalNAc was next explored. Hydrazinolysis of (1b)¹³ (α/β , 1:1) in the same conditions as for (1a) led to (2b) in 74% yield as a mixture of anomers. Compound

† Satisfactory spectroscopic and analytical data were obtained for all new compounds. Physical and selected ¹H NMR data are given below. ¹H NMR spectra were recorded at 250 MHz in CDCl₃ [CD₃OD for (6a) and D₂O for (6b)] and were referenced with tetramethylsilane. (3a), m.p. 133 °C (AcOEt-hexane); $[\alpha]_D$ +177° (c 0.88, CH₂Cl₂) δ_H 5.46 (d, 1H, J 3.5 Hz, H-1), 5.92 (dd, 1H, J 8, 13 Hz, CH=CHCHO), 7.36 (d, 1H, J 13 Hz, CH=CHCHO), 9.44 (d, 1H, J 8 Hz, CHO). (4a), m.p. 157 °C (AcOEt–hexane); $[\alpha]_D$ +179° (c 0.96, CH₂Cl₂); δ_H 5.29 (d, 1H, J 3.5 Hz, H-1), 5.82 (d, 1H, J 15 Hz, CH=CHCO₂Et), 6.01 (t, 1H, J 12 Hz, OCH=CH), 6.81 (d, 1H, J 12 Hz, OCH=CH), 7.21 (dd, 1H, J 12, 15 Hz, CH=CHCO₂Et). (5a), m.p. 100 °C (AcOEt-Et₂Ohexane); $[\alpha]_D + 87^\circ (c \ 1, CH_2Cl_2); \delta_H 4.83 (d, 1H, J 3.5 Hz, H-1).$ (6a) lyophilized white powder, $[\alpha]_D$ +118° (c 0.7, H₂O); δ_H 1.24 (t, 3H, J 7 Hz, OCH₂CH₃), 1.99 (s, 1H, NHCOCH₃), 2.35 (t, 2H, J 7 Hz, CH₂CO₂Et), 4.12 (q, 2H, J 7 Hz, OCH₂Me), 4.77 (d, 1H, J 3.5 Hz, H-1); (3b), colourless syrup, $[\alpha]_D$ +114° (c 1, CH₂Cl₂); δ_H 4.73 (d, 1H, J 8 Hz, H-1'). 5.63 (d, 1H, J 3.5 Hz, H-1), 5.85 (dd, 1H, J 8, 12 Hz, CH=CHCHO), 6.20 (d, 1H, J 8 Hz, NH), 7.40 (d, 1H, J 12 Hz, OCH=CHCHO), 9.44 (d, 1H, J 8 Hz, CHO). (4b), colourless syrup, $\delta_{\rm H}$ 4.65 (d, 1H, J 8 Hz, H-1'), 5.40 (d, 1H, J 3.5 Hz, H-1), 5.77 (d, 1H, J 15 Hz, CH=CHCO₂Et), 5.93 (t, 1H, J 12 Hz, OCH=CH), 6.82 (d, 1H, J 12 Hz, OCH=CH), 7.20 (dd, 1H, J 12, 15 Hz, CH=CHCO₂Et). (5b), colourless syrup, $[\alpha]_D$ +53° (c 1, CH₂Cl₂); δ_H 4.65 (d, 1H, J 8Hz, H-1'), 4.85 (d, 1H, J 3.5 Hz, H-1). (6b), m.p. 188°C (EtOH–AcOEt); $[\alpha]_D$ +110° (c, 1, D₂O), δ_H 1.26 (t, 3H, J 7 Hz, OCH₂CH₃), 2.04 (s, 3H, NHCOCH₃), 2.43 (t, 2H, J 7 Hz, CH₂CO₂Et), 4.17 (q, 2H, J7 Hz, CO₂CH₂Me), 4.48 (d, 1H, J7.5 Hz, H-1'), 4.89 (d, 1H, J 3.5 Hz, H-1).

(2b), which was not further characterized, was used directly for the Michael addition of its sodium salt (NaH in THF) onto the β -tosyloxy acrolein (1.5 equiv.) in the presence of a small amount of 18-crown-6 (1.0 mol %), to give (3b)† in 75% yield. Once again, only the α -anomer was obtained in the reaction. Wittig alkenation gave (4b) in 81% yield as the pure E,E-diastereoisomer. Finally, catalytic reduction (H2/Pd, AcOEt, 100%) followed by the complete deprotection through the Zemplen procedure, afforded in quantitative yield the free disaccharide (6b)† having a linking arm with the desired α -configuration. Further extensions of this stereoselective Michael addition are currently under investigations.

We thank the C.N.R.S. and the University of Paris-Sud for financial support.

Received, 28th July 1989; Com. 9/03204E

References

- 1 G. F. Springer, Science, 1984, 224, 1198; S. H. Itzkowitz, M. Yuan, C. K. Montgomery, J. Kjeldsen, H. K. Takahashi, W. L. Bigbee, and Y. S. Kim, Cancer Res., 1989, 49, 197.
- 2 R. M. Ratcliffe, D. A. Baker, and R. U. Lemieux, Carbohydr. Res., 1981, 93, 35.
- H. Paulsen, C. Kolar, and W. Stengel, Angew. Chem., Int. Ed. Engl., 1976, 15, 440.
- 4 R. Cherniak, Biochemical Prep., 1971, 13, 9.
- 5 G. Excoffier, D. Gagnaire, and J. P. Utille, Carbohydr. Res., 1975, 39, 368.
- 6 J. F. Shaw and E. T. Liaw, 'Biocatalysis in Organic Media,' eds. C. Laane, J. Tramper, and M. D. Lilly, Elsevier, Amsterdam, 1987, p. 233; W. J. Hennen, H. M. Sweers, Y. F. Wang, and C. H. Wong, J. Org. Chem., 1988, 53, 4939.
- 7 S. David, A. Lubineau, and J. M. Vatele, New J. Chem., 1980, 8/9, 547.
- 8 A. Lubineau, H. Bienayme, and J. Le Gallic, unpublished results.
- 9 R. R. Schmidt, Angew. Chem., Int. Ed. Engl., 1986, 25, 212.
- 10 G. Grundler and R. R. Schmidt, *Liebigs Ann. Chem.*, 1984, 1826. 11 R. U. Lemieux, D. R. Bundle, and D. A. Baker, *J. Am. Chem.*
- 11 R. U. Lemieux, D. R. Bundle, and D. A. Baker, J. Am. Chem. Soc., 1975, 97, 4076.
- 12 J. L. Reissig, J. L. Strominger, and L. F. Leloir, J. Biol. Chem., 1955, 217, 959.
- 13 The preparation of the T-antigen and of its peracetylated derivative from *N*-acetyl glucosamine with inversion of the configuration at C-4, has been submitted to *Carbohydr. Res.* for publication.